10.20: Numerical simulation of the behaviour of steel members with damaged SFRM fire protection coatings at elevated temperatures

ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 2688-2697 ◽  
Author(s):  
Kalliopi Zografopoulou ◽  
Euripidis Mistakidis
ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1465-1474
Author(s):  
André Dias Martins ◽  
Dinar Camotim ◽  
Rodrigo Gonçalves ◽  
Pedro Borges Dinis

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1203-1212
Author(s):  
Zhongcheng Ma ◽  
Jarmo Havula ◽  
Attila Joo ◽  
Anita Lendvai

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuminobu Ozaki ◽  
Takumi Umemura

PurposeIn this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.Design/methodology/approachThe engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.FindingsIt was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).Originality/valueRegarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.


2014 ◽  
Vol 955-959 ◽  
pp. 1840-1849
Author(s):  
Cherng Shing Lin ◽  
Kuo Da Chou

Taiwan is an island nation with numerous mountains and few plains. Consequently, the number of tunnel projects has gradually increased and tunnels are becoming longer. Because the number of large tunnels that exceed 1000 meters in length has increased, the effective escape and evacuation of people during a fire and the minimization of injury are crucial to fire protection engineers. For this study, an actual example of a fire that occurred in Hsuehshan Tunnel (12.9 kilometers and the longest tunnel in Southeast Asia) was used. A fire dynamics simulator (FDS) including numerical simulation software was applied to analyze this fire and the relevant information that was collected was compared and verified. The fire site simulation showed the escape and evacuation of people during the fire. Simulations of the original fire site and the possible escape time for people with various attributes were discussed to provide quantitative data and recommendations based on the analysis results, which can serve as a reference for fire protection engineering.


2021 ◽  
Author(s):  
Gabriella László ◽  
Flóra Hajdu ◽  
Rajmund Kuti

Abstract In Hungary a lot of people live in condominiums or in block of flats where fire often occurs despite of precise design and effective fire protection arrangements. This means a hazard for the people living there, for the building constructions and also for the environment. A deeper knowledge of the burning process and examining the negative effects of fire load on building constructions with scientific methods are actual questions nowadays. In order to get to know the phenomena more accurately, fire spread in a bedroom was modeled and numerical simulation was carried out, which is presented in this paper in detail. These experiences may help increasing the fire safety and preventing fires in apartments. The simulations were carried out considering the characteristics of the Hungarian architecture.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 4712-4721
Author(s):  
Jelena Dobrić ◽  
Milan Spremić ◽  
Zlatko Marković ◽  
Bojana Ninić ◽  
Jovana Milovanović

2013 ◽  
Vol 549 ◽  
pp. 31-38 ◽  
Author(s):  
Janina Adamus ◽  
Piotr Lacki

Forming of titanium sheets, especially titanium alloy sheets, is very difficult due to low drawability caused by a high ratio of the yield point to the tensile strength Re/Rm, usually more than 90%. Although drawability of titanium sheets can be enhanced by forming at elevated temperatures it is avoided due to the high costs and difficulties associated with the operation of the process. Therefore the authors have developed an unconventional stamping method allowing for forming of almost unworkable materials at ambient temperature, such as Ti6Al4V titanium alloy. The paper presents both numerical simulation and experimental results of the stamping process using a device specially designed for this purpose.


2011 ◽  
Vol 368-373 ◽  
pp. 1171-1174
Author(s):  
Zhen Wang ◽  
Shu Ping Zhang

This paper analyzes the fire hazard of logistics centers, puts forward to prevent the spread of fire has important significance on study the horizontal spread of fire performance under different fire scene of a project example by using the methods of calculation and numerical simulation. Provide a reference on the spray system and shelf location settings for such construction.


2012 ◽  
Vol 518-523 ◽  
pp. 1269-1272 ◽  
Author(s):  
Liang Yi ◽  
Jie Chen

The aim of this work is to study the burning characteristics of coach fire. With application of computational fluid dynamics (FDS software package), coach fires caused by arson are simulated under different ventilation conditions. Variation of heat release rate (HRR) and distribution of temperature are analyzed. Peak heat release rate of coach fire caused by arson in passenger carriage can reach about 24 MW and maximum temperature in the carriage is over 1000 °C. Results of this study can be referred for fire protection and rescue design of coach.


Sign in / Sign up

Export Citation Format

Share Document