A smart and portable micropump for stable liquid delivery

2019 ◽  
Vol 40 (6) ◽  
pp. 865-872 ◽  
Author(s):  
Xinjie Zhang ◽  
Kang Xia ◽  
Aimin Ji ◽  
Nan Xiang
Keyword(s):  
Nanoscale ◽  
2012 ◽  
Vol 4 (20) ◽  
pp. 6493 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Gunn Kim ◽  
Manhee Lee ◽  
Yonghee Kim ◽  
...  

2003 ◽  
Vol 51 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Yohei Otani ◽  
Norikazu Abe ◽  
Yoshiki Ueda ◽  
Masato Miyake ◽  
Soichiro Okamura ◽  
...  
Keyword(s):  

2004 ◽  
Vol 43 (5A) ◽  
pp. 2667-2671 ◽  
Author(s):  
Kyoung-Won Kim ◽  
Nam-Soo Kim ◽  
Hyung-Gyoo Lee ◽  
Yeong-Seuk Kim ◽  
Hee-Jae Kang ◽  
...  

2002 ◽  
Vol 17 (1) ◽  
pp. 156-166 ◽  
Author(s):  
Q. Xu ◽  
D. Cheng ◽  
G. Trapaga ◽  
N. Yang ◽  
E.J. Lavernia

Computational fluid dynamic techniques were used to analyze the gas flow behavior of a typical atomization configuration. The calculated results are summarized as follows. The atomization gas flow at the atomizer's exit may be either subsonic at ambient pressure or sonic at an underexpanded condition, depending on the magnitude of the inlet gas pressure. When the atomization gas separates to become a free annular gas jet, a closed recirculating vortex region is formed between the liquid delivery tube and the annular jet's inner boundary. Upon entering the atomization chamber, an underexpanded sonic gas flow is further accelerated to supersonic velocity during expansion. This pressure adjustment establishes itself in repetitive expansion and compression waves. A certain protrusion of the liquid delivery tube is crucial to obtain a stable subatmospheric pressure region at its exit. The vortex flow under the liquid delivery tube tends to transport liquid metal to the high kinetic energy gas located outside the liquid delivery tube, thereby leading to an efficient atomization.


1997 ◽  
Vol 474 ◽  
Author(s):  
J. F. Roeder ◽  
S. M. Bilodeau ◽  
R. J. Carl ◽  
T. H. Baum ◽  
P. C. Van Buskirk ◽  
...  

ABSTRACTA unique approach to MOCVD of complex oxides enables deposition of a number of materials of technological importance through the use of liquid delivery of metalorganic precursors. Methodologies for control of composition and exploration of. process space are compared for two film systems, one in a relatively mature state of development ((Ba,Sr)Ti03), the other in an early state of development (Ni-ferrite). In both cases, composition was controlled by mixing metalorganic precursors dissolved in solvents using a liquid delivery system. Films with excellent crystalline quality were deposited in both cases. Polycrystalline BST films displayed properties suitable for DRAM applications: charge storage densities > 80 fF/μm2 and leakage current density < 10−8 A/cm2 for films as thin as 15 nm. Growth mechanisms and rates were determined for the single component oxides of the ferrite films. Epitaxial NiFe204 films were deposited on MgO single crystal substrates at 650°C; x-ray rocking curves yielded FWHM values of 0.046°, commensurate with the substrate.


2020 ◽  
Vol 6 (42) ◽  
pp. eabc8605
Author(s):  
G. Yilmaz ◽  
F. L. Meng ◽  
W. Lu ◽  
J. Abed ◽  
C. K. N. Peh ◽  
...  

The atmosphere contains an abundance of fresh water, but this resource has yet to be harvested efficiently. To date, passive atmospheric water sorbents have required a desorption step that relies on steady solar irradiation. Since the availability and intensity of solar radiation vary, these limit on-demand desorption and hence the amount of harvestable water. Here, we report a polymer–metal-organic framework that provides simultaneous and uninterrupted sorption and release of atmospheric water. The adaptable nature of the hydro-active polymer, and its hybridization with a metal-organic framework, enables enhanced sorption kinetics, water uptake, and spontaneous water oozing. We demonstrate continuous water delivery for 1440 hours, producing 6 g of fresh water per gram of sorbent at 90% relative humidity (RH) per day without active condensation. This leads to a total liquid delivery efficiency of 95% and an autonomous liquid delivery efficiency of 71%, the record among reported atmospheric water harvesters.


2002 ◽  
Vol 17 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Woong-Chul Shin ◽  
Kyu-Jeong Choi ◽  
Soon-Gil Yoon

Ferroelectric SrBi2Ta2O9 (SBT) thin films and Bi2O3 interfacial layers were depositedonto the Pt/Ti/SiO2/Si substrates via liquid-delivery metalorganic chemical vapordeposition. The SBT films with a 5-nm-thick Bi2O3 interfacial layer were well crystallized without c-axis orientation, even at deposition temperature of 540 °C and showed a stronger (115) orientation than those without a Bi2O3 layer with increasing annealing temperature. The remanent polarizations of SBT films with Bi2O3 interfacial layer were significantly improved in comparison with those without Bi2O3 layer. The remanent polarization (2Pr) and coercive field (Ec) of SBT films without and with aBi2O3 interfacial layer annealed at 750 °C were 12 and 21 μC/cm2 and 60 and38 kV/cm, respectively, at an applied voltage of 5 V.


Sign in / Sign up

Export Citation Format

Share Document