Gold nanoparticles and/orN-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner

2015 ◽  
Vol 103 (10) ◽  
pp. 3323-3330 ◽  
Author(s):  
Marcos M. S. Paula ◽  
Fabricia Petronilho ◽  
Francieli Vuolo ◽  
Gabriela K. Ferreira ◽  
Leandro De Costa ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 892 ◽  
Author(s):  
Zetty Zulikha Hafiz ◽  
Muhammad ‘Afif Mohd Amin ◽  
Richard Muhammad Johari James ◽  
Lay Kek Teh ◽  
Mohd Zaki Salleh ◽  
...  

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats’ model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer’s disease through inhibiting the AChE, inflammation, and oxidative stress activities.


2017 ◽  
Vol 37 (7) ◽  
pp. 742-751 ◽  
Author(s):  
AT Jannuzzi ◽  
M Kara ◽  
B Alpertunga

Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. However, hepatotoxicity caused by APAP overdose is the most frequent cause of acute liver failure worldwide and oxidative stress involved in the pathogenesis of APAP hepatotoxicity. Celastrol is a natural triterpenoid derived from Tripterygium wilfordii Hook F. that exhibits antioxidant, anti-inflammatory, and antitumor activities. In this study, we aimed to investigate the potential ameliorative effects of celastrol against APAP-induced cytotoxicity and oxidative stress. Human hepatocellular carcinoma cells (HepG2) were incubated with 20 mM of APAP for 24 h and posttreated with 50 nM, 100 nM, or 200 nM of celastrol for a further 24 h. The methylthiazolyldiphenyl-tetrazolium bromide, lactate dehydrogenase, and neutral red uptake assays showed celastrol posttreatments recovered cell viability and cell membrane integrity in a concentration-dependent manner. Celastrol posttreatments exerted a significant increase in the glutathione content and a decrease in the malondialdehyde and protein carbonylation levels. Also, celastrol posttreatments attenuated the APAP-induced oxidative stress by raising glutathione peroxidase, glutathione reductase, and catalase activities. However, superoxide dismutase activity did not change. In conclusion, celastrol treatment may improve cell viability and increase cellular antioxidant defense in HepG2 cells. These results suggest that celastrol may have the potential to ameliorate the APAP-induced oxidative stress and cytotoxicity.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Ehab A. Abourashed ◽  
Aida Abraha ◽  
Shabana I. Khan ◽  
Tanika McCants ◽  
Saad Awan

In our ongoing search for anti-inflammatory and neuroprotective agents of natural origin, the total methanolic extract (MPE) of horse apple (Maclura pomifera) and its two major prenylated isoflavones, osajin (OSA) and pomiferin (POM), were evaluated in vitro for their ability to affect four mediators of inflammation and to inhibit tau protein fibrillization. The two isoflavones were effective in enhancing the activity of NSAID activated gene (NAG-1) at 2.5 μg/mL (1.5 – 1.8 fold increase) and inhibiting iNOS and NF-κB activity with IC50 values in the range of 6 – 13 μg/mL. Pomiferin also inhibited intracellular oxidative stress with IC50 of 3.3 μg/mL, while osajin did not show any effect. The extract activated NAG-1 and inhibited iNOS and oxidative stress without affecting NF-κB. As observed by transmission electron microscopy (TEM), MPE, OSA and POM also inhibited arachidonic acid-induced tau fibrillization in a concentration-dependent manner.


Author(s):  
Hong Wang ◽  
Wenjuan Zhang ◽  
Jinren Liu ◽  
Junhong Gao ◽  
Le Fang ◽  
...  

Abstract Blast lung injury (BLI) is the major cause of death in explosion-derived shock waves; however, the mechanisms of BLI are not well understood. To identify the time-dependent manner of BLI, a model of lung injury of rats induced by shock waves was established by a fuel air explosive. The model was evaluated by hematoxylin and eosin staining and pathological score. The inflammation and oxidative stress of lung injury were also investigated. The pathological scores of rats’ lung injury at 2 h, 24 h, 3 days, and 7 days post-blast were 9.75±2.96, 13.00±1.85, 8.50±1.51, and 4.00±1.41, respectively, which were significantly increased compared with those in the control group (1.13±0.64; P<0.05). The respiratory frequency and pause were increased significantly, while minute expiratory volume, inspiratory time, and inspiratory peak flow rate were decreased in a time-dependent manner at 2 and 24 h post-blast compared with those in the control group. In addition, the expressions of inflammatory factors such as interleukin (IL)-6, IL-8, FosB, and NF-κB were increased significantly at 2 h and peaked at 24 h, which gradually decreased after 3 days and returned to normal in 2 weeks. The levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase were significantly decreased 24 h after the shock wave blast. Conversely, the malondialdehyde level reached the peak at 24 h. These results indicated that inflammatory and oxidative stress induced by shock waves changed significantly in a time-dependent manner, which may be the important factors and novel therapeutic targets for the treatment of BLI.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2020 ◽  
Vol 45 (10) ◽  
pp. 2442-2455
Author(s):  
Johann Steinmeier ◽  
Sophie Kube ◽  
Gabriele Karger ◽  
Eric Ehrke ◽  
Ralf Dringen

Abstract β-lapachone (β-lap) is reduced in tumor cells by the enzyme NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) to a labile hydroquinone which spontaneously reoxidises to β-lap, thereby generating reactive oxygen species (ROS) and oxidative stress. To test for the consequences of an acute exposure of brain cells to β-lap, cultured primary rat astrocytes were incubated with β-lap for up to 4 h. The presence of β-lap in concentrations of up to 10 µM had no detectable adverse consequences, while higher concentrations of β-lap compromised the cell viability and the metabolism of astrocytes in a concentration- and time-dependent manner with half-maximal effects observed for around 15 µM β-lap after a 4 h incubation. Exposure of astrocytes to β-lap caused already within 5 min a severe increase in the cellular production of ROS as well as a rapid oxidation of glutathione (GSH) to glutathione disulfide (GSSG). The transient cellular accumulation of GSSG was followed by GSSG export. The β-lap-induced ROS production and GSSG accumulation were completely prevented in the presence of the NQO1 inhibitor dicoumarol. In addition, application of dicoumarol to β-lap-exposed astrocytes caused rapid regeneration of the normal high cellular GSH to GSSG ratio. These results demonstrate that application of β-lap to cultured astrocytes causes acute oxidative stress that depends on the activity of NQO1. The sequential application of β-lap and dicoumarol to rapidly induce and terminate oxidative stress, respectively, is a suitable experimental paradigm to study consequences of a defined period of acute oxidative stress in NQO1-expressing cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Bhavna Vaid ◽  
Bhupinder Singh Chopra ◽  
Sachin Raut ◽  
Amin Sagar ◽  
Maulik D. Badmalia ◽  
...  

Delineation of factors which affect wound healing would be of immense value to enable on-time or early healing and reduce comorbidities associated with infections or biochemical stress like diabetes. Plasma gelsolin has been identified earlier to significantly enable injury recovery compared to placebo. This study evaluates the role of rhuGSN for its antioxidant and wound healing properties in murine fibroblasts (3T3-L1 cell line). Total antioxidant capacity of rhuGSN increased in a concentration-dependent manner (0.75-200 μg/mL). Cells pretreated with 0.375 and 0.75 μg/mL rhuGSN for 24 h exhibited a significant increase in viability in a MTT assay. Preincubation of cells with rhuGSN for 24 h followed by oxidative stress induced by exposure to H2O2 for 3 h showed cytoprotective effect. rhuGSN at 12.5 and 25 μg/mL concentration showed an enhanced cell migration after 20 h of injury in a scratch wound healing assay. The proinflammatory cytokine IL-6 levels were elevated in the culture supernatant. These results establish an effective role of rhuGSN against oxidative stress induced by H2O2 and in wound healing of 3T3-L1 fibroblast cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2359-2359
Author(s):  
Larisa Pereboeva ◽  
Erik Westin ◽  
Toral Patel ◽  
Ian Flaniken ◽  
Lawrence S. Lamb ◽  
...  

Abstract Abstract 2359 Introduction: Dyskeratosis congenita (DC) is an inherited multisystem disorder consisting of premature aging, cancer predisposition, bone marrow failure and the characteristic triad of mucosal leukoplakia, skin dyspigmentation and nail dystrophy. Symptomology associated with DC arises as a consequence of mutations within genes associated with telomeres and telomerase activity manifested by critically shortened telomeres in affected cells. We have previously reported a growth disadvantage and increased intracellular oxidative stress in cultured somatic cells obtained from patients with DC. We hypothesize that telomere maintenance is closely linked to dysregulation in oxidative pathways and consequent DNA damage. Our objective was to discern whether pharmacologic intervention to alleviate oxidative stress imparts a protective effect in DC cells. Methods: T lymphocytes from both DC subjects with hTERC mutations and age-matched controls were cultured and expanded in vitro using CD3/CD28 beads. DNA damage to cells was induced using paclitaxel, etoposide, or ionizing radiation during log-phase of cell growth. Cellular proliferation and apoptosis were monitored by cell counting and flow cytometry (FACS) using Annexin V antibody and propidium iodide. Western blotting was used to measure basal and radiation-induced expression of DNA damage response (DDR) proteins, including total p53 and its activated form (serine 15 phosphorylated; p53S15), p21WAF, and phosphorylated H2AX (gH2AX). Level of oxidative stress was determined by FACS using the cell-permeable fluorogenic probe DCFH and dihydroethedium (DHE) detecting reactive oxygen species (ROS). Anti-oxidants, including vitamin E and N acetyl cysteine (NAC), were used in vitro to modulate levels of oxidative stress in control and radiated cells. Results: Comparison of growth curves demonstrated a significant decrease in proliferation of T cells obtained from DC patients versus control T cells. This growth disadvantage was more pronounced following cell exposure to radiation, paclitaxel, and etoposide. To explain these differences we investigated several parameters indicative of DNA damage. DC lymphocytes had higher basal levels of apoptosis, while radiation resulted in comparable levels of apoptosis in both DC and control cultures. Similarly, DDR markers p53 and p53S15, but not p21 and g-H2AX, were basally expressed at higher levels in DC lymphocytes while radiation, in a dose-dependent manner, upregulated expression of p53, p53S15, p21 and g-H2AX in both DC and control lymphocytes. Consistent with DDR data, elevated basal levels of ROS were found in short term DC cultures. Additionally, in a dose dependent manner, the anti-oxidant NAC partially ameliorated the growth disadvantage of DC cells. Importantly, NAC also decreased radiation-induced apoptosis and oxidative stress in DC cells. Studies are ongoing to characterize the modulation of DDR markers in NAC-treated cells. Conclusions: DC is an important disease model for studying the effects of telomere shortening on cellular proliferation and other molecular pathways involved in cell senescence and aging. Our findings of elevated basal levels of apoptosis, DDR proteins and oxidative stress in DC lymphocytes, as well as increased sensitivity of DC cells to cytotoxic agents suggests a role of telomerase and/or telomere length in regulating oxidative and DNA damage response pathways. This data also validates the clinical finding of DC patients' intolerance to myeloablative therapy. Finally a pharmacologic approach to reduce oxidative stress may alleviate some of the untoward toxicities associated with current cytotoxic treatments in DC. Clinical trials testing various anti-oxidant therapies are currently under design. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lijun Fang ◽  
Wei Wang ◽  
Jiazheng Chen ◽  
Anju Zuo ◽  
Hongmei Gao ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the extensive accumulation of myofibroblasts and collagens. However, the exact mechanism that underlies this condition is unclear. Growing evidence suggests that NADPH oxidases (NOXs), especially NOX4-derived oxidative stress, play an important role in the development of lung fibrosis. Bleomycin (BLM) is a tumor chemotherapeutic agent, which has been widely employed to establish IPF animal models. Osthole (OST) is an active constituent of the fruit of Cnidium ninidium. Here, we used an in vivo mouse model and found that OST suppressed BLM-induced body weight loss, lung injury, pulmonary index increase, fibroblast differentiation, and pulmonary fibrosis. OST also significantly downregulated BLM-induced NOX4 expression and oxidative stress in the lungs. In vitro, OST could inhibit TGF-β1-induced Smad3 phosphorylation, differentiation, proliferation, collagen synthesis, NOX4 expression, and ROS generation in human lung fibroblasts in a concentration-dependent manner. Moreover, NOX4 overexpression could prevent the above effects of OST. We came to the conclusion that OST could significantly attenuate BLM-induced pulmonary fibrosis in mice, via the mechanism that involved downregulating TGF-β1/NOX4-mediated oxidative stress in lung fibroblasts.


2019 ◽  
Vol 2 (1) ◽  
pp. 161-174
Author(s):  
Marcos C Reyes-Gonzales ◽  
Eduardo Esteban-Zubero ◽  
Laura López-Pingarrón ◽  
María Soledad Soria ◽  
Desiree Pereboom ◽  
...  

Antioxidant effect of several pineal derived molecules has been well documented. Here, the protective effects of 5-methoxytryptophol (5-MTOH) and 5-methoxyindol-3-acetic acid (5-MIAA) on hepatic cell membrane lipid peroxidation and cell membrane rigidity induced by FeCl3 plus ascorbic acid have been systemically investigated. The membrane fluidity was evaluated by fluorescence spectroscopy, malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl groups of protein were measured as the parameters of lipid and protein damage, respectively. Results showed that oxidative stress increased membrane rigidity, MDA and 4-HDA concentrations as well as carbonyl content in a concentration-dependent manner. 5-MTOH, but not 5-MIAA, significantly attenuated these oxidative indecies. In absence of oxidative stress, none of these methoxyindoleamines modified the content of MDA, 4-HDA or carbonylation. However 5-MIAA at its highest concentration slightly modified membrane fluidity. The results suggest that structural modification of C3 in the methoxyindoleamine, that is, the carboxyl group replaced by hydroxyl group in this site could improve the ability of 5-methoxyindoleamine derivatives to preserve membrane fluidity of cells which are under oxidative stress. 


Sign in / Sign up

Export Citation Format

Share Document