scholarly journals Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lijun Fang ◽  
Wei Wang ◽  
Jiazheng Chen ◽  
Anju Zuo ◽  
Hongmei Gao ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the extensive accumulation of myofibroblasts and collagens. However, the exact mechanism that underlies this condition is unclear. Growing evidence suggests that NADPH oxidases (NOXs), especially NOX4-derived oxidative stress, play an important role in the development of lung fibrosis. Bleomycin (BLM) is a tumor chemotherapeutic agent, which has been widely employed to establish IPF animal models. Osthole (OST) is an active constituent of the fruit of Cnidium ninidium. Here, we used an in vivo mouse model and found that OST suppressed BLM-induced body weight loss, lung injury, pulmonary index increase, fibroblast differentiation, and pulmonary fibrosis. OST also significantly downregulated BLM-induced NOX4 expression and oxidative stress in the lungs. In vitro, OST could inhibit TGF-β1-induced Smad3 phosphorylation, differentiation, proliferation, collagen synthesis, NOX4 expression, and ROS generation in human lung fibroblasts in a concentration-dependent manner. Moreover, NOX4 overexpression could prevent the above effects of OST. We came to the conclusion that OST could significantly attenuate BLM-induced pulmonary fibrosis in mice, via the mechanism that involved downregulating TGF-β1/NOX4-mediated oxidative stress in lung fibroblasts.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohe Li ◽  
Rui Liu ◽  
Yunyao Cui ◽  
Jingjing Liang ◽  
Zhun Bi ◽  
...  

Pulmonary fibrosis is a known sequela of severe or persistent lung damage. Existing clinical, imaging and autopsy studies have shown that the lungs exhibit a pathological pulmonary fibrosis phenotype after infection with coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary fibrosis may be one of the most serious sequelae associated with coronavirus disease 2019 (COVID-19). In this study, we aimed to examine the preventative effects of the antiviral drug remdesivir on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of remdesivir on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of remdesivir in lung fibroblasts and alveolar epithelial cells in vitro. The preventive remdesivir treatment was started on the day of bleomycin installation, and the results showed that remdesivir significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro experiments showed that remdesivir dose-dependently suppressed TGF-β1-induced lung fibroblast activation and improved TGF-β1-induced alveolar epithelial to mesenchymal transition. Our results indicate that remdesivir can preventatively alleviate the severity of pulmonary fibrosis and provide some reference for the prevention of pulmonary fibrosis in patients with COVID-19.


2020 ◽  
Author(s):  
Anghesom Ghebremedhin ◽  
Ahmad Bin Salam ◽  
Benjamin Adu-Addai ◽  
Steve Noonan ◽  
Richard Stratton ◽  
...  

AbstractActivated M2 polarized macrophages are drivers of pulmonary fibrosis in several clinical scenarios such as Acute Respiratory Disease Syndrome (ARDS) and Idiopathic Pulmonary Fibrosis (IPF), through the production of inflammatory and fibrosis-inducing cytokines. In this study, we investigated the effect of targeting the CD206 receptor with a novel fragment of a Host Defense Peptide (HDP), RP-832c to decrease cytokines that cause fibrosis. RP-832c selectively binds to CD206 on M2 polarized bone marrow derived macrophages (BMDM) in vitro, resulting in a time-dependent decrease in CD206 expression, and a transient increase in M1 marker TNFα, which resolves over a 24hr period. To elucidate the antifibrotic effect of RP-832c, we used a murine model of bleomycin (BLM) -induced early-stage pulmonary fibrosis. RP-832c significantly reduced bleomycin-induced fibrosis in a dosage dependent manner, as well as decreased CD206, TGF-β1 and α-SMA expression in mouse lungs. Interestingly we did not observe any changes in the resident alveolar macrophage marker CD170 expression. Similarly, in an established model of lung fibrosis, RP-832c significantly decreased fibrosis in the lung, as well as significantly decreased inflammatory cytokines TNFα, IL-6, IL-10, INF-γ, CXCL1/2, and fibrosis markers TGF-β1 and MMP-13. In comparison with FDA approved drugs, Nintedanib and Pirfenidone, RP-832c exhibited a similar reduction in fibrosis compared to Pirfenidone, and to a greater extent than Nintedanib, with no apparent toxicities observed on body weight or blood chemistry. In summary, RP-832c is a potential agent to mitigate the overactivity of M2 macrophages in pathogenesis several pulmonary fibrotic diseases, including SARS-CoV-2 induced lung fibrosis.


2021 ◽  
Author(s):  
Ji Zhang ◽  
Yi Hu ◽  
Huiping Huang ◽  
Qun Liu ◽  
Yang Du ◽  
...  

Abstract BackgroundIdiopathic pulmonary fibrosis (IPF) is characterised by accumulation of myofibroblasts and deposition of extracellular matrix proteins. Fibroblast-to-myofibroblast transdifferentiation and myofibroblast hyperproliferation plays a major role in pulmonary fibrosis. Moreover, mTOR signaling pathway and SIRT6 play a critical role in pulmonary fibrosis. However, the mechanisms whether SIRT6 affect the myofibroblasts differentiation during IPF remain unclear.MethodWe investigated myofibroblast differentiation using a bleomycin-induced mouse pulmonary fibrosis model and TGF-b1 induced human fetal lung fibroblasts (MRC5) in vitro. We used both SIRT6 siRNA and rapamycin to study the role of SIRT6 and mTOR signaling pathway in the normal human lung fibroblasts and the myofibroblasts from human IPF lungs.ResultsOur data show that high level of SIRT6 was detected in IPF samples, and SIRT6 was significantly upregulated by TGF-β1 in a time and concentration-dependent manner. SIRT6 expression and activation of mTORC1 signalling pathway were upregulated in fibrotic lung tissues and primary lung fibroblasts isolated from patients with IPF and bleomycin-challenged mice. Furthermore, rapamycin treatment inhibited mTORC1 pathway activity and SIRT6 protein expression. SIRT6 SiRNA failed to mediate the activity of mTORC1 pathway and autophagy induction. However, SIRT6 knockdown could promote TGF-b1 induced pro-fibrotic cytokines.ConclusionActivated mTORC1 signalling pathway regulated SIRT6 overexpression. Deficiency of SIRT6 mediated myofibroblasts differentiation through induced pro-fibrotic cytokines production in the present of TGF-β1. The study indicated that manipulations of SIRT6 expression may provide a new therapeutic strategy to prevent and reverse the progression of pulmonary fibrosis.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 892 ◽  
Author(s):  
Zetty Zulikha Hafiz ◽  
Muhammad ‘Afif Mohd Amin ◽  
Richard Muhammad Johari James ◽  
Lay Kek Teh ◽  
Mohd Zaki Salleh ◽  
...  

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats’ model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer’s disease through inhibiting the AChE, inflammation, and oxidative stress activities.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhang Yiran ◽  
Jiang Chenyang ◽  
Wang Jiajing ◽  
Yuan Yan ◽  
Gu Jianhong ◽  
...  

In this study, BRL 3A cells were treated with different Cd concentrations (0, 10, 20, and 40 μmol/L) for 12 h and preincubated with or without N-acetyl-L-cysteine (NAC) (2 mmol/L) for 30 min, and cells were treated with Cd (0 and 20 μmol/L), pretreated with p38 inhibitor (SB203580), JNK (c-Jun NH2-terminal kinases) inhibitor (SP600125), and extracellular signal-regulated kinase (ERK) inhibitor (U0126) for 30 min, and then treated with 20 μmol/L Cd for 12 h. Cd decreased cell viability, SOD, and GSH-Px activity in a concentration-dependent manner. Increased MDA level, ROS generation, nuclear condensation, shrinkage, and fragmentation in cell morphology were inhibited by NAC. Cd-induced apoptosis was attenuated by pretreatment with SB203580, SP600125, and U0126. The results of western blot showed that NAC preincubation affected Cd-activated MAPK pathways, p38 and ERK phosphorylation. Cd treatment elevated the mRNA levels of Bax and decreased the mRNA levels of Bcl-2, respectively. The same effect was found in their protein expression levels. These results suggest that oxidative stress and MAPK pathways participate in Cd-induced apoptosis and that the balance between pro- and antiapoptotic genes (Bax and Bcl-2) is important in Cd-induced apoptosis.


2008 ◽  
Vol 294 (2) ◽  
pp. R467-R476 ◽  
Author(s):  
Chun Yang ◽  
Bupe R. Mwaikambo ◽  
Tang Zhu ◽  
Carmen Gagnon ◽  
Josiane Lafleur ◽  
...  

Recent studies have demonstrated that lymphocyte-derived microparticles (LMPs) impair endothelial cell function. However, no data currently exist regarding the contribution of LMPs in the regulation of angiogenesis. In the present study, we investigated the effects of LMPs on angiogenesis in vivo and in vitro and demonstrated that LMPs strongly suppressed aortic ring microvessel sprouting and in vivo corneal neovascularization. In vitro, LMPs considerably diminished human umbilical vein endothelial cell survival and proliferation in a concentration-dependent manner. Mechanistically, the antioxidants U-74389G and U-83836E were partially protective against the antiproliferative effects of LMPs, whereas the NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium significantly abrogated these effects. Moreover, LMPs increased not only the expression of the NOX subunits gp91phox, p22phox, and p47phox, but also the production of ROS and NOX-derived superoxide (O2−). Importantly, LMPs caused a pronounced augmentation in the protein expression of the CD36 antiangiogenic receptor while significantly downregulating the protein levels of VEGF receptor type 2 and its downstream signaling mediator, phosphorylated ERK1/2. In summary, LMPs potently suppress neovascularization in vivo and in vitro by augmenting ROS generation via NOX and interfering with the VEGF signaling pathway.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Yanhai Jiang ◽  
Guozhang Dong ◽  
Yeliang Song

Mechanical overloading is a risk factor of disc degeneration. Studies have demonstrated that resveratrol helps to maintain the disc cell’s healthy biology. The present study aims to investigate whether resveratrol can suppress mechanical overloading-induced nucleus pulposus (NP) cell senescence in vitro and the potential mechanism. The isolated rat NP cells were seeded in the decalcified bone matrix (DBM) and cultured under non-compression (control) and compression (20% deformation, 1.0 Hz, 6 h/day) for 5 days using the mechanically active bioreactor. The resveratrol (30 and 60 μM) was added into the culture medium of the compression group to investigate its protective effects against the NP cell senescence. NP cell senescence was evaluated by cell proliferation, cell cycle, senescence-associated β-galactosidase (SA-β-Gal) activity, telomerase (TE) activity, and gene expression of the senescence markers (p16 and p53). Additionally, the reactive oxygen species (ROS) content and activity of the NF-κB pathway were also analyzed. Compared with the non-compression group, the high-magnitude compression significantly promoted NP cell senescence, increased ROS generation and activity of the NF-κB pathway. However, resveratrol partly attenuated NP cell senescence, decreased ROS generation and activity of the NF-κB pathway in a concentration-dependent manner under mechanical compression. Resveratrol can alleviate mechanical overloading-induced NP cell senescence through regulating the ROS/NF-κB pathway. The present study provides that resveratrol may be a potential drug for retarding mechanical overloading-induced NP cell senescence.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Daniela Vecchio ◽  
Alessandra Acquaviva ◽  
Beatrice Arezzini ◽  
Hermann Tenor ◽  
Piero A. Martorana ◽  
...  

The phosphodiesterase 4 inhibitor roflumilast prevents bleomycin- (BLM-) induced lung fibrosis in animal models. However, its mechanism of action remains unknown. We investigated whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, can modulatein vitrothe oxidative effects of BLM on human lung fibroblasts (HLF). In addition, since BLM increases the production of F2-isoprostanes that haveper sefibrogenic activity, the effect of RNO on oxidative stress and fibrogenesis induced by the F2-isoprostane 8-epi-PGF2αwas investigated. HLF were preincubated either with the vehicle or with RNO and exposed to either BLM or 8-epi-PGF2α. Proliferation and collagen synthesis were assessed as [3H]-thymidine and [3H]-proline incorporation. Reactive oxygen species (ROS) and F2-isoprostanes were measured. NADPH oxidase 4 (NOX4) protein and mRNA were also evaluated. BLM increased both cell proliferation and collagen synthesis and enhanced ROS and F2-isoprostane production. These effects were significantly prevented by RNO. Also, RNO significantly reduced the increase in both NOX4 mRNA and protein, induced by BLM. Finally, 8-epi-PGF2α  per sestimulated HLF proliferation, collagen synthesis, and NOX4 expression and ROS generation, and RNO prevented these effects. Thus, the antifibrotic effect of RNO observedin vivomay be related to its ability to mitigate ROS generation via downregulation of NOX4.


2018 ◽  
Vol 314 (5) ◽  
pp. L695-L707 ◽  
Author(s):  
Nina Noskovičová ◽  
Katharina Heinzelmann ◽  
Gerald Burgstaller ◽  
Jürgen Behr ◽  
Oliver Eickelberg

Fibroblasts are thought to be the prime cell type for producing and secreting extracellular matrix (ECM) proteins in the connective tissue. The profibrotic cytokine transforming growth factor-β1 (TGF-β1) activates and transdifferentiates fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts, which exhibit increased ECM secretion, in particular collagens. Little information, however, exists about cell-surface molecules on fibroblasts that mediate this transdifferentiation process. We recently identified, using unbiased cell-surface proteome analysis, Cub domain-containing protein 1 (CDCP1) to be strongly downregulated by TGF-β1. CDCP1 is a transmembrane glycoprotein, the expression and role of which has not been investigated in lung fibroblasts to date. Here, we characterized, in detail, the effect of TGF-β1 on CDCP1 expression and function, using immunofluorescence, FACS, immunoblotting, and siRNA-mediated knockdown of CDCP1. CDCP1 is present on interstitial fibroblasts, but not myofibroblasts, in the normal and idiopathic pulmonary fibrosis lung. In vitro, TGF-β1 decreased CDCP1 expression in a time-dependent manner by impacting mRNA and protein levels. Knockdown of CDCP1 enhanced a TGF-β1-mediated cell adhesion of fibroblasts. Importantly, CDCP1-depleted cells displayed an enhanced expression of profibrotic markers, such as collagen V or α-SMA, which was found to be independent of TGF-β1. Our data show, for the very first time that loss of CDCP1 contributes to fibroblast to myofibroblast differentiation via a potential negative feedback loop between CDCP1 expression and TGF-β1 stimulation.


2020 ◽  
Vol 55 (6) ◽  
pp. 1901346 ◽  
Author(s):  
Pierre-Marie Boutanquoi ◽  
Olivier Burgy ◽  
Guillaume Beltramo ◽  
Pierre-Simon Bellaye ◽  
Lucile Dondaine ◽  
...  

BackgroundIdiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-β1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-β/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF.MethodsTRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-β1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally.ResultsTRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-β1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-β1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction.ConclusionOur results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.


Sign in / Sign up

Export Citation Format

Share Document