Role of the small GTPase activating protein IQGAP1 in collagen phagocytosis

2020 ◽  
Vol 236 (2) ◽  
pp. 1270-1280
Author(s):  
Kei Nakajima ◽  
Pamela D. Arora ◽  
Ajay Plaha ◽  
Christopher A. McCulloch
2017 ◽  
Vol 399 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Jorge Cuellar ◽  
José María Valpuesta ◽  
Alfred Wittinghofer ◽  
Begoña Sot

AbstractRasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BPand Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BPand Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.


2011 ◽  
Vol 31 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Mitsunori Fukuda

The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.


2021 ◽  
Vol 22 (7) ◽  
pp. 3787
Author(s):  
Hussam Ibrahim ◽  
Philipp Reus ◽  
Anna Katharina Mundorf ◽  
Anna-Lena Grothoff ◽  
Valerie Rudenko ◽  
...  

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 70
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Martha Villagran ◽  
Robert Zdanowski ◽  
Jacek Z. Kubiak ◽  
...  

The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2089 ◽  
Author(s):  
Iker Lamas ◽  
Nathalie Weber ◽  
Sophie G. Martin

The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.


1998 ◽  
Vol 9 (12) ◽  
pp. 3561-3578 ◽  
Author(s):  
Harri Palokangas ◽  
Ming Ying ◽  
Kalervo Väänänen ◽  
Jaakko Saraste

The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive ∼80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of β-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER–Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2,4-dinitroanilino)-3′-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.


2013 ◽  
Vol 288 (29) ◽  
pp. 21117-21125 ◽  
Author(s):  
Maria Radu ◽  
Sonali J. Rawat ◽  
Alexander Beeser ◽  
Anton Iliuk ◽  
Weiguo Andy Tao ◽  
...  

Signaling from small GTPases is a tightly regulated process. In this work we used a protein microarray screen to identify the Rac-specific GAP, ArhGAP15, as a substrate of the Rac effectors Pak1 and Pak2. In addition to serving as a substrate of Pak1/2, we found that ArhGAP15, via its PH domain, bound to these kinases. The association of ArhGAP15 to Pak1/2 resulted in mutual inhibition of GAP and kinase catalytic activity, respectively. Knock-down of ArhGAP15 resulted in activation of Pak1/2, both indirectly, as a result of Rac activation, and directly, as a result of disruption of the ArhGAP15/Pak complex. Our data suggest that ArhGAP15 plays a dual negative role in regulating small GTPase signaling, by acting at the level of the GTPase itself, as well interacting with its effector, Pak kinase.


2021 ◽  
Author(s):  
Jing Wu ◽  
Jiaqi Gu ◽  
Li Shen ◽  
Xiaonan Jia ◽  
Yiqian Yin ◽  
...  

Influenza A virus (IAV) is a crucial cause of respiratory infections in humans worldwide. Therefore, studies should clarify adaptation mechanisms of IAV and critical factors of the viral pathogenesis in human hosts. GTPases of the Rab family are the largest branch of the Ras-like small GTPase superfamily, and they regulate almost every step during vesicle-mediated trafficking. Evidence has shown that Rab proteins participate in the lifecycle of IAV. In this mini-review, we outline the regulatory mechanisms of different Rab proteins in the lifecycle of IAV. Understanding the role of Rab proteins in IAV infections is important to develop broad-spectrum host-targeted antiviral strategies.


Sign in / Sign up

Export Citation Format

Share Document