Some updated statistical assessments of the surface temperature response to increased greenhouse gases

2007 ◽  
Vol 11 (3) ◽  
pp. 237-250 ◽  
Author(s):  
Christian-D. Schönwiese ◽  
Kirsten Runge
2012 ◽  
Vol 12 (1) ◽  
pp. 2853-2861 ◽  
Author(s):  
M. Previdi ◽  
L. M. Polvani

Abstract. Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011) argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in well-mixed greenhouse gases; furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011) base their claims largely on differences in the simulated temperature change between two groups of IPCC climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1% per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011) found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.


2021 ◽  
Vol 21 (18) ◽  
pp. 13797-13809
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Yuqiang Zhang ◽  
Apostolos Voulgarakis ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA), and less attention has been paid to surface processes, especially for black carbon (BC) aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using idealized model simulations. Our analyses reveal that for greenhouse gases, solar irradiance, and scattering aerosols, the surface temperature changes are mainly dictated by the changes of surface radiative heating, but for BC, surface energy redistribution between different components plays a more crucial role. Globally, when a unit BC forcing is imposed at TOA, the net shortwave radiation at the surface decreases by -5.87±0.67 W m−2 (W m−2)−1 (averaged over global land without Antarctica), which is partially offset by increased downward longwave radiation (2.32±0.38 W m−2 (W m−2)−1 from the warmer atmosphere, causing a net decrease in the incoming downward surface radiation of -3.56±0.60 W m−2 (W m−2)−1. Despite a reduction in the downward radiation energy, the surface air temperature still increases by 0.25±0.08 K because of less efficient energy dissipation, manifested by reduced surface sensible (-2.88±0.43 W m−2 (W m−2)−1) and latent heat flux (-1.54±0.27 W m−2 (W m−2)−1), as well as a decrease in Bowen ratio (-0.20±0.07 (W m−2)−1). Such reductions of turbulent fluxes can be largely explained by enhanced air stability (0.07±0.02 K (W m−2)−1), measured as the difference of the potential temperature between 925 hPa and surface, and reduced surface wind speed (-0.05±0.01 m s−1 (W m−2)−1). The enhanced stability is due to the faster atmospheric warming relative to the surface, whereas the reduced wind speed can be partially explained by enhanced stability and reduced Equator-to-pole atmospheric temperature gradient. These rapid adjustments under BC forcing occur in the lower atmosphere and propagate downward to influence the surface energy redistribution and thus surface temperature response, which is not observed under greenhouse gases or scattering aerosols. Our study provides new insights into the impact of absorbing aerosols on surface energy balance and surface temperature response.


2012 ◽  
Vol 12 (11) ◽  
pp. 4893-4896 ◽  
Author(s):  
M. Previdi ◽  
L. M. Polvani

Abstract. Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011) argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in well-mixed greenhouse gases. Furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011) base their claims largely on differences in the simulated temperature change between two groups of CMIP3 (Coupled Model Intercomparison Project 3) climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1% per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011) found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.


2019 ◽  
Vol 15 (4) ◽  
pp. 1375-1394 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Marina Suzuki

Abstract. There remain substantial uncertainties in future projections of Arctic climate change. There is a potential to constrain these uncertainties using a combination of paleoclimate simulations and proxy data, but such a constraint must be accompanied by physical understanding on the connection between past and future simulations. Here, we examine the relevance of an Arctic warming mechanism in the mid-Holocene (MH) to the future with emphasis on process understanding. We conducted a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future Representative Concentration Pathway (RCP) 4.5 scenario forcings. It is found that many of the dominant processes that amplify Arctic warming over the ocean from late autumn to early winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). The positive albedo feedback in summer results in an increase in oceanic heat release in the colder season when the atmospheric stratification is strong, and an increased greenhouse effect from clouds helps amplify the warming during the season with small insolation. The seasonal progress was elucidated by the decomposition of the factors associated with sea surface temperature, ice concentration, and ice surface temperature changes. We also quantified the contribution of individual components to the inter-model variance in the surface temperature changes. The downward clear-sky longwave radiation is one of major contributors to the model spread throughout the year. Other controlling terms for the model spread vary with the season, but they are similar between the MH and the future in each season. This result suggests that the MH Arctic change may not be analogous to the future in some seasons when the temperature response differs, but it is still useful to constrain the model spread in the future Arctic projection. The cross-model correlation suggests that the feedbacks in preceding seasons should not be overlooked when determining constraints, particularly summer sea ice cover for the constraint of autumn–winter surface temperature response.


1999 ◽  
Author(s):  
D. E. Smith ◽  
J. V. Bubb ◽  
O. Popp ◽  
T. E. Diller ◽  
Stephen J. Hevey

Abstract A transient, in-situ method was examined for calibrating thin-film heat flux gauges using experimental data generated from both convection and radiation tests. Also, a comparison is made between this transient method and the standard radiation substitution calibration technique. Six Vatell Corporation HFM-7 type heat flux gauges were mounted on the surface of a 2-D, first-stage turbine rotor blade. These gauges were subjected to radiation from a heat lamp and in a separate experiment to a convective heat flux generated by flow in a transonic cascade wind tunnel. A second set of convective tests were performed using jets of cooled air impinging on the surface of the gauges. Direct measurements were simultaneously taken of both the time-resolved heat flux and surface temperature on the blade. The heat flux input was used to predict a surface temperature response using a one-dimensional, semi-infinite conduction model into a substrate with known thermal properties. The sensitivities of the gauges were determined by correlating the semi-infinite predicted temperature response to the measured temperature response. A finite-difference code was used to model the penetration of the heat flux into the substrate in order to estimate the time for which the semi-infinite assumption was valid. The results from these tests showed that the gauges accurately record both the convection and radiation modes of heat transfer. The radiation and convection tests yielded gauge sensitivities which agreed to within ±11%.


2020 ◽  
Author(s):  
Joonas Merikanto ◽  
Kalle Nordling ◽  
Petri Räisänen ◽  
Jouni Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. South and East Asian anthropogenic aerosols mostly reside in an air mass extending from the Indian Ocean to the North Pacific. Yet the surface temperature effects of Asian aerosols spread across the whole globe. Here, we remove Asian anthropogenic aerosols from two independent climate models (ECHAM6.1 and NorESM1) using the same representation of aerosols via MACv2-SP (a simple plume implementation of the 2nd version of the Max Planck Institute Aerosol Climatology). We then robustly decompose the global distribution of surface temperature responses into contributions from atmospheric energy flux changes. We find that the horizontal atmospheric energy transport strongly moderates the surface temperature response over the regions where Asian aerosols reside. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the temperature effects efficiently across the Northern hemisphere, and to a lesser extent also over the Southern hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26 ± 0.04 °C (0.22 ± 0.03 for ECHAM6.1 and 0.30 ± 0.03 °C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01 ± 0.01 for ECHAM6.1 and 0.05 ± 0.01 °C for NorESM1) and shortwave cloud (0.03 ± 0.03 for ECHAM6.1 and 0.07 ± 0.02 °C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the Northern hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and weakest during the Arctic summer. We estimate that under a strong Asian aerosol mitigation policy tied with strong climate mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years' worth of current day global warming during the next few decades.


2018 ◽  
Vol 10 (1) ◽  
pp. 317-324 ◽  
Author(s):  
Angeline G. Pendergrass ◽  
Andrew Conley ◽  
Francis M. Vitt

Abstract. Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.


Author(s):  
Yousuke Yamashita ◽  
Kei Sakamoto ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi ◽  
Tatsuya Nagashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document