The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece

2006 ◽  
Vol 17 (3) ◽  
pp. 249-273 ◽  
Author(s):  
H. D. Allen ◽  
R. E. Randall ◽  
G. S. Amable ◽  
B. J. Devereux

2006 ◽  
Vol 34 (1) ◽  
pp. 649-651
Author(s):  
D. Šileikiene ◽  
V. Rutkoviene ◽  
J. Pekarskas


Author(s):  
Roger Moussa ◽  
Bruno Cheviron

Floods are the highest-impact natural disasters. In agricultural basins, anthropogenic features are significant factors in controlling flood and erosion. A hydrological-hydraulic-erosion diagnosis is necessary in order to choose the most relevant action zones and to make recommendations for alternative land uses and cultivation practices in order to control and reduce floods and erosion. This chapter first aims to provide an overview of the flow processes represented in the various possible choices of model structure and refinement. It then focuses on the impact of the spatial distribution and temporal variation of hydrological soil properties in farmed basins, representing their effects on the modelled water and sediment flows. Research challenges and leads are then tackled, trying to identify the conditions in which sufficient adequacy exists between site data and modelling strategies.



Horticulturae ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Athanasios Koukounaras

Greenhouse horticulture is one of the most intensive agricultural systems, with the advantages of environmental parameter control (temperature, light, etc.), higher efficiency of resource utilization (water, fertilizers, etc.) and the use of advanced technologies (hydroponics, automation, etc.) for higher productivity, earliness, stability of production and better quality. On the other hand, climate change and the application of high inputs without suitable management could have negative impacts on the expansion of the greenhouse horticulture sector. This special issue gathers twelve papers: three reviews and nine of original research. There is one review that focuses on irrigation of greenhouse crops, while a second surveys the effects of biochar on container substrate properties and plant growth. A third review examines the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. The research papers report both the use of new technologies as well as advanced cultivation practices. In particular, new technologies are presented such as dye-sensitized solar cells for the glass cover of a greenhouse, automation for water and nitrogen deficit stress detection in soilless tomato crops based on spectral indices, light-emitting diode (LED) lighting and gibberellic acid supplementation on potted ornamentals, the integration of brewery wastewater treatment through anaerobic digestion with substrate-based soilless agriculture, and application of diatomaceous earth as a silica supplement on potted ornamentals. Research studies about cultivation practices are presented comparing different systems (organic-conventional, aeroponic-nutrient film technique (NFT)-substrate culture), quantitative criteria for determining the quality of grafted seedlings, and of wild species as alternative crops for cultivation.



2009 ◽  
Vol 40 (2) ◽  
pp. 19
Author(s):  
Gennaro Giametta ◽  
Bruno Bernardi

Today also those countries boasting a century-old olive growing tradition have to look at the latest, most dynamic, non labour-intensive olive growing systems to abate production (notably, harvesting operations) costs and remain competitive in a globalized market. This is why over the last few years super intensive olive orchard cultivation has been attracting a lot of interest on the part of olive growers all over the world as it accounts for an innovative model whereby olive groves are tailored to the special needs of grape harvesters. This paper reports the first results of experimental mechanical harvesting tests in a super-intensive olive cultivation. The study is intended to explore both productivity and work capacity of two of the most commonly used grape harvesters, Grégoire G120SW and New Holland Braud VX680, in a view to assessing their harvesting performance by a series of tests conducted in Spain. On the basis of the tests it was possible to verify that the machines are able to detach the almost all the drupes (more than 90%), with one only passage, and this independently of both size and location of drupes on the tree crown and of their maturity stage. Using these machines, two people can often carry out the whole harvest process: an operator driving the harvester and another person transferring the fruit from the harvester in the field to the olive oil mill for processing. With this system, the work speed is usually, in the best working conditions, about 1.7 km/hour and the average harvesting time is about 2.5-3 hours/ha. For the time being it is however impossible to draw definitive conclusions in terms of performance of the above cultivation systems and harvesting machines. Additional key observational studies are needed in the years to come to assess the efficiency of the entire model.



Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 735 ◽  
Author(s):  
Nuria Montes-Osuna ◽  
Jesús Mercado-Blanco

Verticillium (Verticillium dahliae Kleb.) wilt is one of the most devastating diseases affecting olive (Olea europaea L. subsp. europaea var. europaea) cultivation. Its effective control strongly relies on integrated management strategies. Olive cultivation systems are experiencing important changes (e.g., high-density orchards, etc.) aiming at improving productivity. The impact of these changes on soil biology and the incidence/severity of olive pests and diseases has not yet been sufficiently evaluated. A comprehensive understanding of the biology of the pathogen and its populations, the epidemiological factors contributing to exacerbating the disease, the underlying mechanisms of tolerance/resistance, and the involvement of the olive-associated microbiota in the tree’s health is needed. This knowledge will be instrumental to developing more effective control measures to confront the disease in regions where the pathogen is present, or to exclude it from V. dahliae-free areas. This review compiles the most recent advances achieved to understand the olive–V. dahliae interaction as well as measures to control the disease. Aspects such as the molecular basis of the host–pathogen interaction, the identification of new biocontrol agents, the implementation of “-omics” approaches to unravel the basis of disease tolerance, and the utilization of remote sensing technology for the early detection of pathogen attacks are highlighted.



Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2451
Author(s):  
Sofia Filatova ◽  
Benjamin Claassen ◽  
Guillermo Torres ◽  
Ben Krause-Kyora ◽  
Eva Holtgrewe Stukenbrock ◽  
...  

Rye (Secale cereale ssp. cereale L.) is a secondary domesticate, considered to have originated as a weed in wheat fields and to have developed traits of domestication by evolving similar physiological and morphological characteristics to those of wheat. Although it migrated into Europe as a weed possessing domestication traits, it became one of the most significant crops grown in large parts of Europe from the medieval period onward. Within the modern borders of Germany, rye was grown using at least two divergent cultivation practices: eternal rye monoculture and three-field rotation. The straw of rye was used to produce Wellerhölzer, which are construction components in traditional half-timbered houses that have enabled a desiccated preservation of the plant remains. In order to assess the impact of cultivation practices, local environmental conditions and genetic variation on the genetic diversification of rye, we seek to integrate well-established archaeobotanical methods with aDNA sequencing of desiccated plant remains obtained from Wellerhölzer from Germany. In the current contribution, we present a proof of concept, based on the analysis of plant remains from a Wellerholz from the Old Town Hall of Göttingen. We use arable weed ecology to reconstruct cultivation practices and local environmental conditions and present a phylogenetic analysis based on targeted loci of the chloroplast and nuclear genome. Our results emphasise that the study of desiccated remains of plants from Wellerhölzer offer a unique opportunity for an integration of archaeobotanical reconstructions of cultivation practices and local environment and the sequencing of aDNA.



2021 ◽  
Author(s):  
Artemi Cerdà ◽  
Enric Terol

High rates of soil erosion compromise sustainable agriculture. In rainfed agricultural fields, erosion rates several orders ofmagnitude higher than the erosion rates considered tolerable have been quantified. In Mediterranean rainfed crops suchas vineyards, almonds and olive groves, and in the new sloping citrus and persimmon plantations, the rates of soil lossmake it necessary to apply measures to reduce them to avoid collapse in agricultural production. Managements such asweeds, catch crops and mulches (straw and pruning remains) are viable options to achieve sustainability. This work appliesmeasurements through plots, simulated rainfall experiments and ISUM (Improved Stock-Unearhing method) to quantifythe loss of soil at different temporal and spatial scales in fields of traditional management (herbicide or tillage) and underalternative management (mulches and plant covers). The work carried out at the experimental station for the study of soilerosion in the Sierra de Enguera and those of Montesa and Les Alcusses provide information on erosion plots undernatural rain. Experiments carried out with simulated rain in fields of olive, almond, citrus, persimmon, vineyard and fruittrees report the hydrological and erosive response under low frequency and high intensity rains. And finally, the ISUMtopographic method report the impact of long-term management, from the plantation. The results indicate that the loss ofsoil is greater (x10-1000) in soils under traditional management (tillage and herbicide) due to the fact that they remain barefor most of the year. The use of straw mulch immediately reduces soil erosion by two orders of magnitude. Also mulchesfrom chipped pruned branches remains are very efficient but require more years to reduce soil loss. Weeds and catchcrops are very efficient in controlling erosion.



2015 ◽  
Vol 13 (3) ◽  
pp. e03SC01 ◽  
Author(s):  
José Guerrero-Casado ◽  
Antonio J. Carpio ◽  
Laura M. Prada ◽  
Francisco S. Tortosa

<p>Cover crops are an effective means to reduce soil erosion and to provide food and shelter for wildlife. However, in areas of intensive farming, which are characterised by the scarcity of weed communities, wild herbivores may focus their grazing on cover crops, which could make their implementation difficult. In this work, we test whether rabbit grazing can prevent the growth of herbaceous cover crops in olive groves in Southern Spain in addition to assessing the role of rabbit abundance and diversity of weeds in the development of cover crops. This question has been addressed by sowing <em>Bromus rubens</em> between the rows of five olive groves in Cordoba province (Spain). We then monitored the surface covered by <em>B. rubens,</em> along with both diversity of weed communities and rabbit abundance. Two rabbit exclusion areas were also placed in each olive grove in order to assess the impact of rabbits on the development of cover crops. Our results showed that the surface occupied by <em>B. rubens</em> was considerably higher in the rabbit exclusion areas (mean 56.8 ± 5.65 %) than in those areas in which they could feed (mean 35.6 ± 4.32 %). The coverage occupied by cover crops was higher in areas with lower rabbit density, although this relationship was modulated by the weed diversity index, since in areas with the same rabbit abundance the coverage was higher in those with a richer weed community. These findings suggest that high rabbit abundances can prevent the development of herbaceous cover crops in olive groves, particularly in areas in which alternative food resources (measured as weed diversity) are scarce.</p>



Author(s):  
Diego F. dos Santos ◽  
◽  
Fabrina B. Martins ◽  
Roger R. Torres

ABSTRACT Minas Gerais is vulnerable to climate change, with negative impacts on water balance and changes in the cultivation of several crops. Currently, the olive crop has been an alternative source for farmers, especially those in the South of the state. However, there is no information on areas with climatic conditions suitable for olive cultivation, as well as the possible impacts of climate change. The aim of this study was to verify the impact of climate projections on water balance and agroclimatic zoning for olive cultivation in the Minas Gerais, based on current climate conditions (1980-2011), and different climate change projections for three future periods (2011-2040, 2041-2070 and 2071-2100). For the current climate, Minas Gerais showed 37% of suitable area, 15% of marginal area and 48% of unsuitable area for olive cultivation. For the period 2071-2100, only 4% was classified as suitable area, 6% as marginal area and 90% as unsuitable. Projections of climate change, of both temperature and rainfall, will affect the olive cultivation, substantially reducing the suitable area in the entire state.



Climate ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 54 ◽  
Author(s):  
G. Michalopoulos ◽  
K. A. Kasapi ◽  
G. Koubouris ◽  
G. Psarras ◽  
G. Arampatzis ◽  
...  

Olive cultivation is considered as one of the most significant agricultural activities in Greece, from a financial, social, and ecological point of view. Intensive cultivation practices in combination with the Mediterranean climate, lead to depletion of soil organic matter, erosion, desertification, and degradation of water resources. This paper describes sustainable olive crop management practices that were comparatively applied in 120 olive groves in Greece for 5 years with the participation of three farmers groups. Organic materials recycled in the olive groves during the present study were valuable sources of carbon, nitrogen, phosphorus, and potassium. Carbon content was highest in pruning residue (53.8–54.2%) while all materials studied were considered rich in C ranging between 41.9–46.2% (compost) and 34.9–42.5% (three-phase olive mill waste-OMW). The highest content in nitrogen was detected in compost (2–2.45%) followed by pruning residue (0.93–0.99%) and OMW (0.03–0.1%). Compost was considered a good source of phosphorus (0.3–0.6%) followed by pruning residue (0.08–0.13%) and OMW (0.01–0.3%). Potassium was also considerable in the organic materials recycled ranging 0.5–1.5% in compost followed by pruning residue (0.5–0.7%) and OMW (0.3–1.1%). Adoption of modified pruning also had important contribution toward sustainable management of olive trees. Sustainable pruning resulted in a well-balanced ratio between vegetative growth and fruiting (balanced, every year, in order to eradicate biennial bearing). Significant fluctuation in olive yields was observed in the first years of the project while yields were gradually stabilised by applying sustainable crop management. In parallel, yield increase without additional inputs, lowers the carbon—environmental footprint of the product regarding several environmental impact categories. Results can be integrated in the national agricultural and environmental policy in Mediterranean countries toward the achievement of a circular economy.



Sign in / Sign up

Export Citation Format

Share Document