Sustained Drug Release by Thermoresponsive Sol-Gel Hybrid Hydrogels of Poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl)Propyl Methacrylate) Copolymers

2017 ◽  
Vol 38 (6) ◽  
pp. 1600724 ◽  
Author(s):  
Zsófia Osváth ◽  
Tamás Tóth ◽  
Béla Iván
2019 ◽  
Vol 1 (1) ◽  
pp. 18-24
Author(s):  
Lakshmanaperumal Sundarabharathi ◽  
Mahendran Chinnaswamy ◽  
Hemalatha Parangusan ◽  
Deepalekshmi Ponnamma ◽  
Mariam Al Ali Al-Maadeed

Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramics material used in medical applications because of its ability to form direct chemical bonds with living tissues. In this context, we investigate the biocompatibility and dielectric properties of Sr2+-substituted hydroxyapatite nanoparticles were synthesized by sol-gel method. The influence of strontium on the crystal structure, functional group, morphological, electrical properties, and biocompatibility of as-synthesized nano-hydroxyapatite samples was analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM). Dielectrical properties of the bioactive Sr-HA sample were investigated by a dielectric impedance spectroscopy method. The observed results illustrate the incorporation of Sr2+ ions in the apatite lattice could influence the pure HA properties, by reducing the crystallite size and crystallinity quite consistent with the morphology variation. The ac conductivity (σac) increased with an increasing applied frequency confirmed that prepared HA sample exhibited the universal power law nature. Further, the in vitro drug loading and release studies using doxycycline as a model drug demonstrate that the Sr2+ -HA nanoparticles show high drug adsorption capacity and sustained drug release. Thus, the improved bioceramics system could be a promising candidate for future biomedical applications.


2020 ◽  
Vol 49 (42) ◽  
pp. 15095-15108
Author(s):  
Priyanka ◽  
Anil Kumar

Zn2+/Ag in Zn2+-Ag NPs@β-FeOOH@5′-CMP induce puckering of ribose in 5′-CMP to produce stimulus-responsive soft supramolecular hydrogels with superb mechanical features, sustained drug release and SERS activity indicating its biomedical potential.


2006 ◽  
Vol 6 (9) ◽  
pp. 3139-3144 ◽  
Author(s):  
Li-Xiong Wen ◽  
Hao-Min Ding ◽  
Jie-Xin Wang ◽  
Jian-Feng Chen

With two different methods, ibuprofen was entrapped into porous hollow silica nanoparticles (PHSNs) carriers, which were synthesized through a sol–gel route by using CaCO3 nanoparticles as the inorganic templates. By employing pressured CO2 as the loading medium, the amount of ibuprofen that was pressed into the carriers was ∼52% higher than that by simply soaking. The drug release behaviors of the ibuprofen-loaded PHSNs were investigated in a simulated intestine juice and an artificial gastric fluid, respectively, and it demonstrated a sustained release pattern in all cases and the sample prepared under high pressure had a lower release rate in both fluids and thus owned a greater sustained drug release capacity. In the acidic artificial gastric fluid, no silica was degraded and only 16% of the loaded ibuprofen was released from the matrix in 300 min. However, much more silica was degraded in the simulated intestine juice in a shorter time and almost all the loaded ibuprofen was dissolved into the solution eventually, resulting in a quicker and complete ibuprofen release. Therefore, the PHSNs can be utilized for applications of controlled drug delivery to small intestine.


2017 ◽  
Vol 3 (2) ◽  
pp. 699-702
Author(s):  
Sabine Illner ◽  
Olga Sahmel ◽  
Stefan Siewert ◽  
Thomas Eickner ◽  
Niels Grabow

AbstractDevelopment of new implant coatings with temperature-controlled drug release to treat infections after device implantation can be triggered by highly elastic hydrogels with adequate stability and adhesive strength in the swollen state. By using an ionic liquid (IL [ViPrIm]+[Br]−) as additive to N-isopropylacrylamide (NIPAAm) unique effects on volumetric changes and mechanical properties as well as thermoresponsive drug release of the obtained hybrid hydrogels were observed. In this context, rheological measurements allow the monitoring of gelation processes as well as chemical, mechanical, and thermal treatments and effects of additives. Hybrid hydrogels of pNIPAAm and poly (ionic liquid) (PIL) were prepared by radical emulsion polymerization with N,N′-methylenebis(acrylamide) as 3D crosslinking agent. By varying monomer, initiator and crosslinker amounts the multi-compound system during polymerization was monitored by oscillatory time sweep experiments. The time dependence of the storage modulus (G′) and the loss modulus (G″) was measured, whereby the intersection of G′ and G″ indicates the sol-gel transition. Viscoelastic behavior and complex viscosity of crosslinked and non-crosslinked hydrogels were obtained. Within material characterization rheology can be used to determine process capability and optimal working conditions. For biomedical applications complete hydrogelation inter-connecting all compounds can be received providing the possibility to process mechanically stable, swellable implant coatings or wound closures.


2012 ◽  
Vol 47 (6) ◽  
pp. 1379-1384 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Vinitha Sudha Mohan ◽  
Anil Kumar Sinha ◽  
Harikrishna Varma

Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document