A non-invasive NMR relaxometric characterization of the cyclododecane-solvent system inside porous substrates

2014 ◽  
Vol 53 (1) ◽  
pp. 27-33 ◽  
Author(s):  
F. Presciutti ◽  
B. Doherty ◽  
C. Anselmi ◽  
B. G. Brunetti ◽  
A. Sgamellotti ◽  
...  
Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


2021 ◽  
Vol 8 (3) ◽  
pp. 41
Author(s):  
Fardin Khalili ◽  
Peshala T. Gamage ◽  
Amirtahà Taebi ◽  
Mark E. Johnson ◽  
Randal B. Roberts ◽  
...  

Treatments of atherosclerosis depend on the severity of the disease at the diagnosis time. Non-invasive diagnosis techniques, capable of detecting stenosis at early stages, are essential to reduce associated costs and mortality rates. We used computational fluid dynamics and acoustics analysis to extensively investigate the sound sources arising from high-turbulent fluctuating flow through stenosis. The frequency spectral analysis and proper orthogonal decomposition unveiled the frequency contents of the fluctuations for different severities and decomposed the flow into several frequency bandwidths. Results showed that high-intensity turbulent pressure fluctuations appeared inside the stenosis for severities above 70%, concentrated at plaque surface, and immediately in the post-stenotic region. Analysis of these fluctuations with the progression of the stenosis indicated that (a) there was a distinct break frequency for each severity level, ranging from 40 to 230 Hz, (b) acoustic spatial-frequency maps demonstrated the variation of the frequency content with respect to the distance from the stenosis, and (c) high-energy, high-frequency fluctuations existed inside the stenosis only for severe cases. This information can be essential for predicting the severity level of progressive stenosis, comprehending the nature of the sound sources, and determining the location of the stenosis with respect to the point of measurements.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Kevin Cheng ◽  
Andrew Lin ◽  
Jeremy Yuvaraj ◽  
Stephen J. Nicholls ◽  
Dennis T.L. Wong

Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.


2000 ◽  
Vol 361-362 ◽  
pp. 213-217 ◽  
Author(s):  
K Ernst ◽  
I Sieber ◽  
M Neumann-Spallart ◽  
M.-Ch Lux-Steiner ◽  
R Könenkamp
Keyword(s):  

Author(s):  
Jordan David Fliss ◽  
Brandon Zanette ◽  
Yonni Friedlander ◽  
Siddharth Sadanand ◽  
Andras A Lindenmaier ◽  
...  

Premature infants often require mechanical ventilation and oxygen therapy which can result in bronchopulmonary dysplasia (BPD), characterized by developmental arrest and impaired lung function. Conventional clinical methods for assessing the prenatal lung are not adequate for the detection and assessment of long-term health risks in infants with BPD, highlighting the need for a non-invasive tool for the characterization of lung microstructure and function. Theoretical diffusion models, like the Model of Xenon Exchange (MOXE), interrogate alveolar gas exchange by predicting the uptake of inert Hyperpolarized (HP) 129Xe gas measured with HP 129Xe magnetic resonance spectroscopy (MRS). To investigate HP 129Xe MRS as a tool for non-invasive characterization of pulmonary microstructural and functional changes in vivo, HP 129Xe gas exchange data were acquired in an oxygen exposure rat model of BPD that recapitulates the fewer and larger distal airways and pulmonary vascular stunting characteristics of BPD. Gas exchange parameters from MOXE, including airspace mean chord length (L­m), apparent hematocrit in the pulmonary capillaries (HCT), and pulmonary capillary transit time (tx), were compared with airspace mean axis length and area density (MAL and ρ­A) and percentage area of tissue and air (PTA and PAA) from histology. L­m was significantly larger in the exposed rats (p=0.003) and correlated with MAL, ρ­A, PTA, and PAA (0.59<|ρ|<0.66 and p<0.05). Observed increase in HCT (p=0.012) and changes in tx are also discussed. These findings support the use of HP 129Xe MRS for detecting fewer, enlarged distal airways in this rat model of BPD, and potentially in humans.


Sign in / Sign up

Export Citation Format

Share Document