scholarly journals Structure–property relationships in glass reinforced polyamide, part 2: The effects of average fiber diameter and diameter distribution

2007 ◽  
Vol 28 (3) ◽  
pp. 331-343 ◽  
Author(s):  
J. L. Thomason
NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950139
Author(s):  
Saleh S. Abdelhady ◽  
Said H. Zoalfakar ◽  
M. A. Agwa ◽  
Ashraf A. Ali

This study is an attempt to optimize the electrospinning process to produce minimum Nylon 6,6 nanofibers by using Taguchi statistical technique. Nylon 6,6 solutions were prepared in a mixture of formic acid (FA) and Dichloromethane (DCM). Design of experiment by using Taguchi statistical technique was applied to determine the most important processing parameters influence on average fiber diameter of Nylon 6,6 nanofiber produced by electrospinning process. The effects of solvent/nylon and FA/DCM ratio on average fiber diameter were investigated. Optimal electrospinning conditions were determined by using the signal-to-noise (S/N) ratio that was calculated from the electrospun Nylon 6,6 nanofibers diameters according to “the-smaller-the-better” approach. The optimum Nylon 6,6 concentration (NY%) and FA/DCM ratio were determined. The morphology of electrospun nanofibers is significantly altered by FA/DCM solvent ratio as well as Nylon 6,6 concentration. The smallest diameter and the narrowest diameter distribution of Nylon 6,6 nanofibers ([Formula: see text][Formula: see text]nm) were obtained for 10 wt% Nylon 6,6 solution in 80 wt% FA and 20 wt% DCM. An increase of 118%, 280% and 26% in tensile strength, modulus of elasticity and elongation at break over as-cast was obtained, respectively. Glass transition temperature of Nylon 6,6 nanofibers were determined by using differential scanning calorimeter (DSC). Analysis of variance ANOVA shows that NY% is the most influential parameter.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 978 ◽  
Author(s):  
Marina Luginina ◽  
Katharina Schuhladen ◽  
Roberto Orrú ◽  
Giacomo Cao ◽  
Aldo R. Boccaccini ◽  
...  

Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


2019 ◽  
Vol 18 (13) ◽  
pp. 1796-1814 ◽  
Author(s):  
Sk. Abdul Amin ◽  
Nilanjan Adhikari ◽  
Tarun Jha ◽  
Shovanlal Gayen

Camptothecin (CPT), obtained from Camptotheca acuminata (Nyssaceae), is a quinoline type of alkaloid. Apart from various traditional uses, it is mainly used as a potential cytotoxic agent acting against a variety of cancer cell lines. Though searches have been continued for last six decades, still it is a demanding task to design potent and cytotoxic CPTs. Different CPT analogs are synthesized to enhance the cytotoxic potential as well as to increase the pharmacokinetic properties of these analogs. Some of these analogs were proven to be clinically effective in different cancer cell lines. In this article, different CPT analogs have been highlighted extensively to get a detail insight about the structure-property relationships as well as different quantitative structure-activity relationships (QSARs) modeling of these analogs are also discussed. This study may be beneficial for designing newer CPT analogs in future.


1990 ◽  
Vol 21 (6) ◽  
pp. 1527-1540 ◽  
Author(s):  
D. V. Edmonds ◽  
R. C. Cochrane

Sign in / Sign up

Export Citation Format

Share Document