Chemical characterization of contaminating airborne dust particles by X-ray microprobes

1986 ◽  
Vol 94 (2) ◽  
pp. 849-854 ◽  
Author(s):  
Szabina B. Töeök

2020 ◽  
Vol 13 (1) ◽  
pp. 17-28

Harmattan dust haze in Nigeria is due to annual deposition of very fine dust particles as a result of both natural and human activities. There are scanty reports on the mineralogical, elemental and heavy metal composition in the Harmattan dust blowing across the country to support the presence of minerals and elements in the Harmattan dust. The aim of this study is to assess minerals and elemental compositions of Harmattan dust variations across Oyo (7032'N, 3025'E) and Minna (9035'N, 6032'E), Nigeria. Harmattan dust samples were collected using clean plastic bowls of 10 cm diameter and analysis was conducted on the samples collected at the two stations using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Fluoresence (XRF), Particle Induced X-ray Emission (PIXE) and Atomic Absorption Spectroscopy (AAS). It was observed that elements, such as K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Mo, As, Zr, Pb, V, Sr, Cr and Ce, were present in different concentrations in the samples collected. Minerals, such as Quartz [SiO2], Rutile [TiO2], Periclase [MgO], Corundum [Al2O3], Hematite [Fe2O3], Cuprite [Cu2O], Baddeleyite [ZrO2], Litharge [PbO], Monazite [P2O5], Zincite [ZnO], Montroydite [HgO] and Lime [CaO], were present in the samples collected at each station in different proportions. The soil mass concentration of the elements was calculated and observed to be 3.5179μg m3 at Oyo and 3.4745μg m3 at Minna. It was observed that the Harmattan dusts moving across Nigeria have almost all the elements present in Harmattan dust varying from station to station as the dust is moving towards the south of the country. The study concluded that the elemental composition of the dust samples analyzed revealed that the percentage compositions of some elements are higher than the acceptable WHO standard values, which may affect human health. It is therefore recommended that adequate precautionary measures and policies should be made to help mitigate the effects of high elemental concentrations observed.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.



Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2597-2611 ◽  
Author(s):  
Mario Bandiera ◽  
Patrice Lehuédé ◽  
Marco Verità ◽  
Luis Alves ◽  
Isabelle Biron ◽  
...  

This work aims to characterise the chemical composition of Roman opaque red glass sectilia dated to the 2nd century A.D and to shed light on Roman glassmaking production of different shades of red, from red to reddish-brown. Due to the lack of technical historical sources for this period many questions about technological aspects still remain. In this project a multi-disciplinary approach is in progress to investigate the red glass sectilia with several red hues from the Imperial Villa of Lucius Verus (161–169 A.D.) in Rome. First, colorimetric measurements were taken to identify the various red hues. The second step was chemical characterization of the samples and the identification of crystalline colouring phases. Particle Induced X-Ray Emission (PIXE) analysis was used to investigate the chemical composition of these glass samples, while the crystalline phases were identified by Raman Spectroscopy and Scanning Electrons Microscope with Energy Dispersive X-ray Spectrometry (SEM-EDS). Using SEM-EDS nanoparticles were detected as a colouring agent, the chemical composition and the morphology of which has been studied in depth. This information has been compared with the colorimetric analysis to establish any correlation with the different colour hues.



2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.



Author(s):  
Carolyn Dillian

This article discusses the current status of archaeological obsidian studies, including techniques used in characterization and sourcing studies, obsidian hydration, and regional syntheses. It begins with an overview of obsidian and the unique formation processes that create it before turning to a discussion of the significance of characterization and sourcing techniques for understanding prehistoric obsidian trade and exchange. It then considers the problematic aspects of the term “sourcing,” despite its ubiquitous use in archaeology and archaeometry, along with the use of X-ray fluorescence in the chemical characterization of obsidian. It also explores obsidian hydration dating methods and equations, factors that can affect the date assignments for hydration specimens, and the various uses of obsidian in prehistoric times. Finally, it addresses some important questions relating to obsidian research and suggests new directions in the field.



Author(s):  
Elisabeth Holmqvist

Handheld portable energy-dispersive X-ray fluorescence (pXRF) spectrometry is used for non-destructive chemical characterization of archaeological ceramics. Portable XRF can provide adequate analytical sensitivity to discriminate geochemically distinct ceramic pastes, and to identify compositional clusters that correlate with data patterns acquired by NAA or other high sensitivity techniques. However, successful non-destructive analysis of unprepared inhomogeneous ceramic samples requires matrix-defined scientific protocols to control matrix effects which reduce the sensitivity and precision of the instrumentation. Quantification of the measured fluorescence intensities into absolute concentration values and detection of light elements is encumbered by the lack of matrix matched calibration and proper vacuum facilities. Nevertheless, semi-quantitative values for a limited range of high Z elements can be generated. Unstandardized results are difficult to validate by others, and decreased analytical resolution of non-destructive surface analysis may disadvantage site-specific sourcing, jeopardize correct group assignments, and lead to under-interpretation of ceramic craft and production systems.



Wear ◽  
1997 ◽  
Vol 202 (2) ◽  
pp. 172-191 ◽  
Author(s):  
Zhanfeng Yin ◽  
Masoud Kasrai ◽  
Marina Fuller ◽  
G.Michael Bancroft ◽  
Kim Fyfe ◽  
...  


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 459-470
Author(s):  
Mouhssin El Halim ◽  
Lahcen Daoudi ◽  
Meriam El Ouahabi ◽  
Valérie Rousseau ◽  
Catherine Cools ◽  
...  

ABSTRACTTextural, mineralogical and chemical characterization of archaeological ceramics (zellige) from El Badi Palace (Marrakech, Morocco), the main Islamic monument from the Saadian period (sixteenth century), has been performed to enhance restoration and to determine the technology of manufacturing. A multi-analytical approach based on optical and scanning electron microscopy, cathodoluminescence, X-ray fluorescence and X-ray diffraction was used. Re-firing tests on ceramic supports were also performed to determine the firing temperatures used by the Saadian artisans. A calcareous clay raw material was used to manufacture these decorative ceramics. The sherds were fired at a maximum temperature of 800°C in oxidizing atmosphere. The low firing temperature for ‘zellige’ facilitates cutting of the pieces, but also causes fragility in these materials due to the absence of vitreous phases.



Author(s):  
Marta Siczek ◽  
Marcin Zawadzki ◽  
Miłosz Siczek ◽  
Agnieszka Chłopaś-Konowałek ◽  
Paweł Szpot

Abstract Purpose The aim of the study was to present the spectroscopic characteristics and crystal structure of the etazene—a benzimidazole opioid, which appeared on the illegal drug market in Poland in the last weeks. Methods The title compound was analyzed by X-ray crystallography as well as gas and liquid chromatography combined with mass spectrometry. Spectroscopic techniques have also been used, such as nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopies. Results We presented the identification and the broad chemical characterization of etazene, a synthetic opioid that has recently been introduced on the illegal drug market. Conclusions In this paper, we described single-crystal X-ray, chromatographic and spectroscopic characterization of a synthetic opioid that emerged on the new psychoactive substance (NPS) market in Poland. To the best of our knowledge, this is the first full characterization of etazene. Analytical data presented in the work can be helpful in identification and detection of the NPS in forensic and clinical laboratories.



Sign in / Sign up

Export Citation Format

Share Document