A New Protocol for Testing the Tensile Strength of Rugby Garments — A Preliminary Study

2006 ◽  
pp. 397-402
Author(s):  
Bryan C. Roberts ◽  
Mike P. Caine
2011 ◽  
Vol 3 (3) ◽  
pp. 471-479
Author(s):  
M. S. I. Mozumder ◽  
M. M. Rahman ◽  
M. A. Rashid ◽  
M. A. Islam ◽  
M. E. Haque

The tensile strength (TS) and elastic modulus (ES) of non-irradiated (thermally treated) and irradiated Polypropylene (PP) - styrene butadiene rubber (SBR) composites were studied. The content of SBR (mass %) on PP and radiation dose play an important role on tensile strength and modulus of elasticity of PP-SBR composites. Tensile strength (TS) decreased markedly on increasing the SBR content on PP and even on exposing to radiation. The elastic modulus (EM) of PP-SBR composite has a tendency to increase with radiation dose and aging time but decreases with SBR loading. The water uptakes increase with SBR loading which accelerate with aging.Keywords: Polypropylene; Styrene butadiene rubber; Tensile strength; Elastic modulus.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i3.3288               J. Sci. Res. 3 (3), 481-489 (2011)


2015 ◽  
Vol 1113 ◽  
pp. 99-104
Author(s):  
Mohamad Asnawi bin Ya’acob ◽  
Ku Halim Ku Hamid ◽  
Suffiyana Akhbar ◽  
Mohd Faizal Abdul Rahman

This work studies the performance of HDPE/kenaf biocomposite by varying the kenaf loading from 10 wt% to 50 wt%. Compounding has carried out by using single screw extruder. The result indicates that at 10 wt% of kenaf loading gave the highest tensile and impact strength which are25.32 MPa and 102.25 MPa respectively. Beside, at 10% to 50% of kenaf loading show increasing tensile modulus, flexural modulus and flexural strength with increment of kenaf fiber but decreasing in tensile strength and impact strength.


2015 ◽  
Vol 1134 ◽  
pp. 23-27
Author(s):  
Siti Zulaikha Ibrahim ◽  
Che Mohd Som Said ◽  
Mohamad Asri Ahmad ◽  
Azemi Samsuri

In this study, several batches of natural rubber (SMR L) were compounded with three different types of accelerators, which were N-cyclohexylbenzothiazole-2-sulphenamide (CBS), diphenylguanidine (DPG) and zinc diethyldithiocarbamate (ZDEC). ZDEC is known as an ultrafast accelerator. The rubber compounds were cured at 140°C, 130°C, 120°C, 110°C and 100°C in accordance with the temperature gradients observed within the thick rubber block. The main aim of this study is to cure the rubber at each temperature region to the same cure time as that of the outermost region (20 minutes at 140°C). The amount of sulfur and accelerator were adjusted accordingly at each curing temperature to match the state of cure at 140°C. The state of cure of of the vulcanized rubbers were measured using hardness and tensile strength. The same state of cure is achieved if the hardness and tensile strength value are within ±2 IRHD and ±3 MPa, respectively with that of the control vulcanized rubber (hardness and tensile strength cured at 140°C). The results shows that the hardness and tensile strength of the vulcanized rubber at each temperature region are within the expected margins. The results clearly indicated that the type and amount of accelerators, and the amount of sulfur were correctly chosen at each temperature.


2014 ◽  
Vol 910 ◽  
pp. 234-237
Author(s):  
Jia Horng Lin ◽  
Ting Ting Li ◽  
Ying Hsuan Hsu ◽  
Ying Huei Shih ◽  
Ching Wen Lou

For application as surface layer of PU composites for the future, puncture resistance and inflame retarding property are both considered. Therefore, in this preliminary study, we discussed effect of Nylon fiber fineness and hot pressing on tensile, tear and puncture resistance properties of fiber composite composed of inflame retarding nonwoven and Nylon/PET nonwoven. Result shows that, Fiber composite with finer Nylon fibers exhibited higher tensile strength and puncture resistances. Hot pressing decreased tensile strength, tear strength and puncture resistance by 5-mm needle penetration, but increased puncture resistance by 2-mm needle penetration.


2010 ◽  
Vol 93-94 ◽  
pp. 505-508 ◽  
Author(s):  
Sarinya Shawaphun ◽  
Thara Manangan ◽  
Sirirat Wacharawichanant

Degradation of LDPE and PP films using the photo sensitive metal oxides or pro-oxidants (e.g. Fe2O3, CuxO, ZnO, and TiO2 at various particle sizes) as the catalysts in both thermo- and photo-oxidation of plastic films with oxygen followed by photolytic process to give free radicals has been studied. Our preliminary study in hexane solution found that the carbonyl index (CI) increased under the shortwave ultraviolet (254nm) significantly greater than under the longer wave (366nm) due to its greater energy and highly absorbed by the pro-oxidants generating more free radical concentration which could then be photolysed into carbonyl compounds. The pro-oxidant blended PE and PP films under ultraviolet (254nm) irradiation showed the carbonyl index elevation at the beginning and then reducing to a constant level similarly in most cases. This probably suggested that the carbonyl primarily formed and degraded into other free radicals. Under shortwave ultraviolet irradiation for 72 hours, the LDPE films containing nano-sized rutile-TiO2 and nano-sized anatase-TiO2 (1%w/w) were able to reduce the film tensile strength by 32% and 55%, respectively. The film containing micron-sized commercial TiO2 lower the film tensile strength only by 7-10%. However, the tensile strength of the TiO2 blended PP films tends to increase possibly because the rate of cross linkage exceeds the rate of scission.


2012 ◽  
Vol 576 ◽  
pp. 289-292 ◽  
Author(s):  
Ahmad Zuraida ◽  
A.R. Nur Humairah ◽  
A.W. Nur Izwah ◽  
Z. Siti Naqiah

Thermoplastic sago starch (TPSS) was produced by plasticizing with glycerol through melt blending before being compression moulded. The investigated TPSS was prepared at glycerol/starch weight fraction of 40/60, 35/65 and 30/70. The functional groups composition, tensile strength, density, moisture content and water absorption were evaluated and compared at different glycerol/starch ratio. The compatibility of the glycerol as the plasticizer in the TPSS was proven by Fourier transform infrared spectroscopy (FTIR) where glycerol could form stable hydrogen bond with sago starch. This preliminary study demonstrated that the stress at maximum load was only applicable for lower glycerol/starch ratio of 30/70. The density of TPSS was inversely proportional to the increment of glycerol/starch ratio whereas moisture content and water absorption had opposite relationship.


2021 ◽  
Vol 1 (1) ◽  
pp. 29-36
Author(s):  
Galih Rineksa ◽  
Yudan Whulanza ◽  
Misri Gozan

Biodegradable and bio-based substitutes for conventional plastics are on the rise in these past decades. One of the applications of bioplastic is for biomedical implants or bioimplant. Starch was plasticized using glycerol at varying amounts (40% and 60% of dry starch mass) to produce thermoplastic starch (TPS). A reinforcement filler of microcrystalline cellulose (MCC) was used to improve the mechanical properties. The MCC content in this study was also varied (0%, 2%, 4%, and 8% w/w). This paper studies the mechanical properties of starch-MCC composites for their potential as bioimplant. The optimum glycerol and MCC contents from the results are 40% glycerol and 8% MCC with 2.97 MPa tensile strength and 7.20% strain at break. Thus, the sample has the potential application in bioimplant material for trabecular bone replacement, which has an average tensile strength of 2 MPa and strains at a break of 2.5%.


2019 ◽  
Vol 70 (1) ◽  
pp. 84-86
Author(s):  
Oana Botoaca ◽  
Edwin Sever Bechir ◽  
Raluca Monica Comaneanu ◽  
Stefania Coman ◽  
Mihail Tarcolea ◽  
...  

In our study we compared in vitro the tensile strength of 4 types of adhesive systems used for brackets, two using bonding and two self-etching. The detachment test were made by the Instron� 8801 universal mechanical testing machine, from the Mechanical Testing Laboratory of the Materials Resistance Department, the Faculty of Engineering and Management of Technological Systems, the Polytechnic University of Bucharest. From the experimental results we find that the used adhesives offer good shear resistance. Vertise Flow adhesive used for sample 2, which has the highest shear stress at break (tmax ~ 25 MPa), is clearly highlighted. Vertise Flow is follow by the Orthocem adhesive used for sample 1 with tmax ~ 14 MPa, then the Neobond adhesive used in sample 4 with tmax ~ 13 MPa, and the weakest of the adhesives is Grandio Flow used for sample 3 (tmax ~ 12 MPa). We believe it is necessary to carry out further studies on larger batches of samples to obtain results that can be validated by statistical analysis.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (9) ◽  
pp. 567-578
Author(s):  
HAITANG LIU ◽  
XIN JIN ◽  
LIN CHEN ◽  
XIAOCHEN CHANG ◽  
JIE LI ◽  
...  

By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document