RACINE2.2: A Software Application for Processing and Mapping Spatial Distribution of Root Length and Potential Root Extraction Ratio from Root Counts on Trench Profiles

2021 ◽  
pp. 247-258
Author(s):  
Awa Faye ◽  
Laurent Laplaze ◽  
Bassirou Sine ◽  
Jean-Louis Chopart
Author(s):  
Edvaldo B. Santana Junior ◽  
Eugênio F. Coelho ◽  
Jailson L. Cruz ◽  
João B. R. da S. Reis ◽  
Diego M. de Mello ◽  
...  

ABSTRACT Trickle irrigation has been largely used for banana in Brazil, mainly due to the increase in water and fertilizer use efficiency. These irrigation systems have different options concerning number, type and flow rate of emitters as well as for hydraulics, number and location of lateral lines. The small area of soil wetted by these systems limits root spatial distribution of crops. This study aimed to evaluate the effect of different trickle irrigation systems on the root spatial growth and root spatial distribution of banana cv. Prata Gorutuba. Root length density and root length were evaluated in soil profiles of three micro-sprinkler systems, with emitter flow rates of 35, 53 and 70 L h-1 and of two drip irrigation systems, with one and two lateral lines per crop row. Trickle irrigation systems influence root spatial distribution, favoring a greater or smaller distribution of roots at different depth and distance from the plant according to micro-sprinkler flow rate and to the number of lateral lines per crop row. The effect on root spatial distribution is more accentuated for micro-sprinkler systems than for drip systems. The majority of the total root length (80%) was observed in the soil profiles from 0.33 to 0.57 m depth and at distances from the plants of 0.75 to 0.83 m.


2013 ◽  
Vol 64 (10) ◽  
pp. 965 ◽  
Author(s):  
Qinghua Ma ◽  
Hongliang Tang ◽  
Zed Rengel ◽  
Jianbo Shen

Localised supply of phosphorus (P) plus ammonium improves root proliferation and nutrient uptake by plants grown on calcareous soils, but how nitrogen (N) forms (ammonium and urea) and placements affect maize (Zea mays L.) root distribution and nutrient uptake is not fully understood. A soil column study was conducted with four N and P combinations including P plus urea (UP), mono-ammonium phosphate (MAP), di-ammonium phosphate (DAP) and P plus ammonium sulfate (ASP), and two fertiliser application methods (banding in the 10–25 cm layer or mixing throughout the 45-cm soil profile). Shoot N and P content increased by 11–31% and 14–37% in the treatments with banding P plus ammonium (MAP, DAP or ASP) compared with banding UP and the mixing treatments. Shoot N and P uptake rates per root dry weight or root length were higher with banding P plus ammonium than their respective mixing treatments. Banding P plus ammonium increased root-length density in the fertiliser-banded layer compared with banding UP and the mixing treatments. The results show that modifying root spatial distribution by banding P plus ammonium leads to an increase in N and P uptake rates, and consequently enhances nutrient accumulation by maize.


2019 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Runzhang Qi ◽  
Stefan Guldin

2D colloidal assembly is a vital process in the fabrication of nanostructured devices and remains of widespread interest in fundamental research. Characterising the ordering is crucial to develop an understanding of the driving forces behind the assembly and to optimise processing conditions. Image analysis offers a direct evaluation pathway, typically via the radial distribution function or the 2D-fast Fourier transform. Both methods have inherent limitations; the former provides no angular dependence while the latter is challenged when confronted with imperfection on the mean size, spacing and coverage of the building blocks. Here, we introduce the 2D spatial distribution function (SDF) as an alternative pathway to evaluate colloidal ordering. We benchmark the method in case studies of prominent examples and provide a tool-kit for implementation, either as imageJ plugin or standalone software. Application and interpretation is straightforward and particularly powerful to analyse and compare colloidal assemblies with limited order.


2013 ◽  
Vol 138 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Li Ma ◽  
Chang Wei Hou ◽  
Xin Zhong Zhang ◽  
Hong Li Li ◽  
De Guo Han ◽  
...  

Understanding of root growth patterns and architecture of apple (Malus ×domestica Borkh.) trees is very important for commercial apple production. Most commercial apple trees are usually a grafted complex consisting of the scion and the rootstock, each of which is a different genotype. Recently, rootstocks of dwarf tree species have been used extensively to meet the convenience in management; however, this practice appears to negatively impact root development. Using minirhizotrons, we investigated root dynamics, root spatial distribution, and shoot growth in ‘Red Fuji’ scion grown: 1) directly on dwarf and vigorous root stocks and 2) on a dwarf root stock placed in between the non-dwarf scion and non-dwarf rootstock (hereinafter referred to as an interstem). The results showed that: 1) one or two peaks in total root length density (TRLD) were observed in each scion/rootstock combinations every year; 2) the greatest TRLD peaks were always observed in between May and December. The peaks of shoot growth were always asynchronous with that of white root length density; 3) compared with scion/vigorous rootstock combinations, inserting a dwarfing interstem between the scion and vigorous seedling rootstock reduced the TRLD; 4) scion/vigorous rootstock combinations had a relatively deep, widespread and large root system. Scion/dwarfing rootstock combinations had a root system distributed in a small region; and the root systems of scion/dwarfing interstem/vigorous rootstock combinations tended to be intermediate between those of scion/vigorous rootstock and scion/dwarfing rootstock. This implies that the insertion of interstems altered the root architecture by not only the quantity of roots, but also the spatial distribution.


2019 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Runzhang Qi ◽  
Stefan Guldin

2D colloidal assembly is a vital process in the fabrication of nanostructured devices and remains of widespread interest in fundamental research. Characterising the ordering is crucial to develop an understanding of the driving forces behind the assembly and to optimise processing conditions. Image analysis offers a direct evaluation pathway, typically via the radial distribution function or the 2D-fast Fourier transform. Both methods have inherent limitations; the former provides no angular dependence while the latter is challenged when confronted with imperfection on the mean size, spacing and coverage of the building blocks. Here, we introduce the 2D spatial distribution function (SDF) as an alternative pathway to evaluate colloidal ordering. We benchmark the method in case studies of prominent examples and provide a tool-kit for implementation, either as imageJ plugin or standalone software. Application and interpretation is straightforward and particularly powerful to analyse and compare colloidal assemblies with limited order.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document