Heterogeneity in Endothelial Cells with Special Reference to their Growth Related Proteins

Author(s):  
S. Kumar ◽  
P. Kumar ◽  
D. Pye ◽  
A. Sattar ◽  
M. Wang ◽  
...  
2021 ◽  
Vol 9 (6) ◽  
pp. 1144
Author(s):  
Isabel Marcelino ◽  
Philippe Holzmuller ◽  
Ana Coelho ◽  
Gabriel Mazzucchelli ◽  
Bernard Fernandez ◽  
...  

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Zhang ◽  
Jing Long ◽  
Nannan Li ◽  
Xuelian Ma ◽  
Lisheng Zheng

Hyperglycemia exposure results in the dysfunction of endothelial cells (ECs) and the development of diabetic complications. Circular RNAs (circRNAs) have been demonstrated to play critical roles in EC dysfunction. The current study aimed to explore the role and mechanism of circRNA CLIP–associating protein 2 (circ_CLASP2, hsa_circ_0064772) on HG-induced dysfunction in human umbilical vein endothelial cells (HUVECs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the levels of circ_CLASP2, miR-140-5p and F-box, and WD repeat domain-containing 7 (FBXW7). The stability of circ_CLASP2 was identified by the actinomycin D and ribonuclease (RNase) R assays. Cell colony formation, proliferation, and apoptosis were measured by a standard colony formation assay, colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry, respectively. Western blot analysis was performed to determine the expression of related proteins. Targeted correlations among circ_CLASP2, miR-140-5p, and FBXW7 were confirmed by dual-luciferase reporter assay. High glucose (HG) exposure downregulated the expression of circ_CLASP2 in HUVECs. Circ_CLASP2 overexpression or miR-140-5p knockdown promoted proliferation and inhibited apoptosis of HUVECs under HG conditions. Circ_CLASP2 directly interacted with miR-140-5p via pairing to miR-140-5p. The regulation of circ_CLASP2 overexpression on HG-induced HUVEC dysfunction was mediated by miR-140-5p. Moreover, FBXW7 was a direct target of miR-140-5p, and miR-140-5p regulated HG-induced HUVEC dysfunction via FBXW7. Furthermore, circ_CLASP2 mediated FBXW7 expression through sponging miR-140-5p. Our current study suggested that the overexpression of circ_CLASP2 protected HUVEC from HG-induced dysfunction at least partly through the regulation of the miR-140-5p/FBXW7 axis, highlighting a novel therapeutic approach for the treatment of diabetic-associated vascular injury.


2018 ◽  
Vol 46 (4) ◽  
pp. 1617-1627 ◽  
Author(s):  
Ting Guo ◽  
Hongyuan Song ◽  
Zichang Zhao ◽  
Zhongtian Qi ◽  
Shihong Zhao

Background/Aims: Annexin A2 receptor (AX2R) can mediate annexin A2 signalling and induce apoptosis in a variety of cells, but its role in neovascularization (NV) remains unclear. Krüppel-like transcription factor 2 (KLF2) is known to be expressed in a range of cell types and to participate in a number of processes during development and disease, such as endothelial homeostasis, vasoregulation and vascular growth/remodelling. The aim of our study was to investigate the role of AX2R in NV and the plausible molecular mechanism. Methods: We constructed a eukaryotic overexpression plasmid for AX2R (Lenti-AX2R) by using polymerase chain reaction (PCR). The full-length human AX2R gene was transfected into human retinal endothelial cells (HRECs) and human umbilical vein endothelial cells (HUVECs) using lentivirus vectors to overexpress AX2R. All experiments were divided into three groups: control, negative control (Lenti-EGFP), and Lenti-AX2R.Cell proliferation, cell migration, tube formation, mouse aortic ring assays and mouse matrigel plug assay were applied to analyse the effect of AX2R in NV. Furthermore, we conducted flow cytometry to evaluate whether AX2R could influence the cell cycle. A series of cell cycle-related proteins including cyclin A1, cyclin B1, cyclin D1, cyclin E1, CDK1, and p-CDC2 were detected by WB. The mRNA and protein levels of KLF2, vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) were further quantified by RT-PCR and WB to reveal the possible mechanism. Results: Overexpression of AX2R significantly inhibited cell proliferation, migration and tube formation in both types of endothelial cells (ECs), HRECs and HUVECs. It also suppressed vessel sprouting in the mouse aortic ring assay and NV in mouse matrigel plug assay. Furthermore, infection with Lenti-AX2R lentivirus arrested the cell cycle in S/G2 and influenced the expression of a series of cell cycle-related proteins. We also found that the overexpression of AX2R increased the expression of KLF2, mediating VEGF and VEGFR2. Conclusions: Overexpression of AX2R contributes to the inhibition of NV via suppressing KLF2 ubiquitin-dependent protein degradation, which might therefore be a therapeutic option for NV. It could be considered more broadly as an anti-angiogenic agent in the treatment of neovascular-related diseases in the future.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1309
Author(s):  
Shuai Zhang ◽  
Hongzheng Wang ◽  
Zhiyun Xu ◽  
Yongkang Bai ◽  
Lin Xu

Metastasis and recurrence are the main causes of lung adenocarcinoma patients’ death. Lymphatic metastasis is the main way of non-small cell lung cancer (NSCLC) metastasis. C-C chemokine receptor type 7 (CCR7) overexpression has been demonstrated to mediate occurrence and progression of NSCLC. Moreover, Chemokine ligand 21 (CCL21) was used to activate CCR7. The CCR7–CCL21 axis is one of the most common “chemokine-receptor” modes of action in the development and metastasis of multiple tumors. However, the role of the CCR7–CCL21 axis in lymphatic metastasis of NSCLC is poorly understood. The study was conducted to investigate the molecular mechanism underlying CCR7–CCL21 axis-mediated lymphatic metastasis of NSCLC A549 cells. Tumor necrosis factor α (TNF-α) could regulate the tumor microenvironment balance by promoting chemokine secretion. Our study demonstrated that TNF-α promoted CCL21 production in human lymphatic endothelial cells (HLEC). Results further showed that TNF-α significantly activated the NF-κB pathway in HLEC. NF–κB pathway inhibition with ammonium pyrrolidinedithiocarbamate (PDTC) caused a significant decrease in CCL21 secretion, suggesting that TNF-α-induced CCL21 secretion in HLEC was through NF–κB pathway. Co-culture of A549 cells and TNF-α-treated HLEC confirmed that the metastasis of A549 cells was enhanced, meanwhile, apoptosis-related proteins were hardly affected. The data proved that a co-culture system prevented cell apoptosis while inducing the lymphatic metastasis of A549 cells. However, the situation was reversed after neutralizing CCL21 expression, suggesting that TNF-α-induced CCL21 secretion in HLEC is involved in A549 cells metastasis. Collectively, our finding demonstrated that NF-κB pathway-controlled CCL21 secretion of HLEC contributing to the lymphatic metastasis of A549 cells via the CCR7–CCL21 axis, validating the CCR7–CCL21 axis as a potential target to inhibit metastasis of NSCLC.


1997 ◽  
Vol 767 (2) ◽  
pp. 388-392 ◽  
Author(s):  
Takehisa Saito ◽  
Zhi Jian Zhang ◽  
Hideaki Tsuzuki ◽  
Toshio Ohtsubo ◽  
Takechiyo Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document