Effects of GH on Bone Metabolism and Bone Mass

Author(s):  
Claes Ohlsson
Keyword(s):  
Author(s):  
Linda Denise Fernandes Moreira ◽  
Fernanda Cerveira A. O. Fronza ◽  
Rodrigo Nolasco dos Santos ◽  
Patrícia Lins Zach ◽  
Ilda S. Kunii ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1895
Author(s):  
Francesca Marini ◽  
Francesca Giusti ◽  
Federica Cioppi ◽  
Davide Maraghelli ◽  
Tiziana Cavalli ◽  
...  

Primary hyperparathyroidism (PHPT) is the most common endocrinopathy in multiple endocrine neoplasia type 1 (MEN1). Persistent levels of increased parathyroid hormone (PTH) result in a higher incidence of osteopenia and osteoporosis compared to the general population. Surgical removal of hyper-functioning parathyroid tissue is the therapy of choice. This retrospective study evaluated the effect of parathyroidectomy (PTX) on bone metabolism and bone mass in two series of patients with MEN1 PHPT and sporadic PHPT (sPHPT) by comparing bone metabolism-related biochemical markers and bone mineral density (BMD) before and after surgery. Our data confirmed, in a higher number of cases than in previously published studies, the efficacy of PTX, not only to rapidly restore normal levels of PTH and calcium, but also to normalize biochemical parameters of bone resorption and bone formation, and to improve spine and femur bone mass, in both MEN1 PHPT and sPHPT. Evaluation of single-patient BMD changes after surgery indicates an individual variable bone mass improvement in a great majority of MEN1 PHPT patients. In MEN1 patients, PTX is strongly suggested in the presence of increased PTH and hypercalcemia to prevent/reduce the early-onset bone mass loss and grant, in young patients, the achievement of the bone mass peak; routine monitoring of bone metabolism and bone mass should start from adolescence. Therapy with anti-fracture drugs is indicated in MEN1 patients with BMD lower than the age-matched normal values.


2021 ◽  
Vol 30 (03) ◽  
pp. 222-229
Author(s):  
Matthias Hackl ◽  
Elisabeth Semmelrock ◽  
Johannes Grillari

AbstractMicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.


2019 ◽  
Vol 20 (18) ◽  
pp. 4619 ◽  
Author(s):  
Kazunori Hamamura ◽  
Kosuke Hamajima ◽  
Shoyoku Yo ◽  
Yoshitaka Mishima ◽  
Koichi Furukawa ◽  
...  

Glycosphingolipids are known to play a role in developing and maintaining the integrity of various organs and tissues. Among glycosphingolipids, there are several reports on the involvement of gangliosides in bone metabolism. However, there have been no reports on the presence or absence of expression of globo-series glycosphingolipids in osteoblasts and osteoclasts, and the involvement of their glycosphingolipids in bone metabolism. In the present study, we investigated the presence or absence of globo-series glycosphingolipids such as Gb3 (globotriaosylceramide), Gb4 (globoside), and Gb5 (galactosyl globoside) in osteoblasts and osteoclasts, and the effects of genetic deletion of Gb3 synthase, which initiates the synthesis of globo-series glycosphingolipids on bone metabolism. Among Gb3, Gb4, and Gb5, only Gb4 was expressed in osteoblasts. However, these glycosphingolipids were not expressed in pre-osteoclasts and osteoclasts. Three-dimensional micro-computed tomography (3D-μCT) analysis revealed that femoral cancellous bone mass in Gb3 synthase-knockout (Gb3S KO) mice was lower than that in wild type (WT) mice. Calcein double labeling also revealed that bone formation in Gb3S KO mice was significantly lower than that in WT mice. Consistent with these results, the deficiency of Gb3 synthase in mice decreased the number of osteoblasts on the bone surface, and suppressed mRNA levels of osteogenic differentiation markers. On the other hand, osteoclast numbers on the bone surface and mRNA levels of osteoclast differentiation markers in Gb3S KO mice did not differ from WT mice. This study demonstrated that deletion of Gb3 synthase in mice decreases bone mass via attenuation of bone formation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yunyao Luo ◽  
Xiaoyong Qiao ◽  
Yaxian Ma ◽  
Hongxia Deng ◽  
Charles C. Xu ◽  
...  

Abstract Irisin is a product of fibronectin type III domain-containing protein (Fndc5) and is involved in the regulation of adipokine secretion and the differentiation of osteoblasts and osteoclasts. In this study, we aimed to determine whether irisin lacking affects glucose/lipid and bone metabolism. We knocked out the Fndc5 gene to generate irisin-lacking mice. Remarkable, irisin lacking was related to poor ‘browning response’, with a bigger size of the intraperitoneal white adipose cell and decreased a number of brown adipose cells in brown adipose of interscapular tissue. The irisin lacking mice had hyperlipidemia and insulin resistance, reduced HDL-cholesterol level, increased LDL-cholesterol level, and decreased insulin sensitivity. The lacking of irisin was associated with reduced bone strength and bone mass in mice. The increased number of osteoclasts and higher expression of RANKL indicated increased bone resorption in irisin lacking mice. The level of IL-6 and TNF-α also increased in irisin lacking mice. The results showed that irisin lacking was related to decreased ‘browning response’, glucose/lipid metabolic derangement, and reduced bone mass with increased bone resorption. Further studies are needed to confirm these initial observations and explore the mechanisms underlying the effects of irisin on glucose/lipid and bone metabolism.


1992 ◽  
Vol 22 (8) ◽  
pp. 542-545 ◽  
Author(s):  
H. RESCH ◽  
P. PIETSCHMANN ◽  
W. WOLOSZCZUK ◽  
E. KREXNER ◽  
P. BERNECKER ◽  
...  

2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Gabriella Császárné Gombos ◽  
Viktória Bajsz ◽  
Emese Pék ◽  
Béla Schmidt ◽  
Eszter Sió ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4672-4672
Author(s):  
Nicola Martinelli ◽  
Michela Traglia ◽  
Fabiana Busti ◽  
Marcella Sirtori ◽  
Natascia Campostrini ◽  
...  

Background and Aims Osteoporosis is a multifactorial major health problem affecting over 200 million people worldwide. It is long known as a complication of marked iron overload, both primary (i.e. genetic hemochromatosis) and secondary (i.e. transfusional iron overload), but only recently cellular and animal models have shed some light on the pathogenetic link between iron and bone metabolism. Iron has been shown to activate osteoclasts (Ishii KA, Nat Med 2009) and to inhibit osteoblasts (Yamasaki K, Toxicol Lett 2009), which express ferroportin regulated by hepcidin (Xu Y, Inflammation 2012). A murine model has shown that iron overload causes bone loss through induction of Reactive Oxygen Species (ROS) (Tsay J, Blood 2010). Of note, a recent longitudinal study in a Korean population has demonstrated that serum ferritin, even at concentrations generally not considered as “iron overload”, is an independent predictor of bone mass deterioration and incident vertebral fractures (Kim BJ, J Bone Miner Res 2012), an effect most prominent in women ≥ 45 years of age (Kim BJ, Osteoporos Int 2013). Taking advantage from the recently completed iron section of the Val Borbera Study (Traglia M, J Med Genet 2011), this study aimed to evaluate for the first time the association between iron status (including serum hepcidin levels) and bone mass in a Caucasian population. Subjects and Methods This survey included 921 subjects (564 females, 357 males) aged 53.8 ± 16.3 years for whom complete data regarding bone mass (measured by transportable Quantitative Ultrasonography, QUS-based approach) and iron status (including serum hepcidin-25 levels measured by Mass Spectrometry) were available. Subjects with known inflammatory and renal disorders, as well as hereditary hemochromatosis had been previously excluded. Analyses were performed separately in males and females, due to known gender-related differences in either iron or bone metabolism. Main Results No significant association was found in males, while in females both ferritin (r= -0.42, P<0.001) and hepcidin (r= -0.30, P<0.001) were inversely correlated with T-score at univariate analyses. However, after including both ferritin and hepcidin in an age-adjusted linear regression model, only ferritin remained a significant predictor of T-score variability (beta coefficient= -0.115, P=0.042). Subsequent regression models adjusted for age, BMI, and C-Reactive Protein highlighted ferritin levels as independent predictors of T-score in females. After stratification for age and ferritin categories, T-score decreased linearly with increasing ferritin levels especially in females aged 50-75 years (n=293), i.e. the age known to be at major risk of accelerated bone loss (P<0.001 – Figure 1). Conclusions This study confirms that iron status significantly associates with bone loss at population level even in Caucasians, particularly in post-menopausal women. Increasing iron stores, even not clearly “pathologic”, may influence bone metabolism through increased ROS and/or hepcidin-mediated altered iron handling of osteoblasts and osteoclasts. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document