The Molecular Basis of Variation Affecting Gene Expression: Evidence from Studies on the Ribosmal RNA Gene Loci of Wheat

Author(s):  
R. B. Flavell ◽  
R. Sardana ◽  
S. Jackson ◽  
M. O’Dell
2005 ◽  
Vol 19 (5) ◽  
pp. 1-13 ◽  
Author(s):  
Janet C. Lindsey ◽  
Jennifer A. Anderton ◽  
Meryl E. Lusher ◽  
Steven C. Clifford

Over the last decade, the analysis of genetic defects in primary tumors has been central to the identification of molecular events and biological pathways involved in the pathogenesis of medulloblastoma, the most common malignant brain tumor of childhood. Despite this, understanding of the molecular basis of the majority of cases remains poor. In recent years, the emerging field of epigenetics, which describes heritable alterations in gene expression that occur in the absence of DNA sequence changes, has forced a revision of the understanding of the mechanisms of gene disruption in cancer. Accumulating evidence indicates a significant involvement for epigenetic events in medulloblastoma development. Recent studies have identified a series of candidate tumor suppressor genes (for example, RASSF1A, CASP8, and HIC1) that are each specifically epigenetically inactivated in a large proportion (> 30%) of medulloblastomas by promoter hypermethylation, leading to the silencing of their gene expression. These findings shed new light on medulloblastoma and offer great potential for an improved understanding of its molecular pathology. The authors review the current understanding of epigenetic events in cancer and their contribution to medulloblastoma development. Their nature, origins, and functional role(s) in tumorigenesis are considered, and the authors assess the potential utility of these events as a basis for novel diagnostic and therapeutic approaches.


2017 ◽  
Vol 284 (1862) ◽  
pp. 20170896 ◽  
Author(s):  
Pierre-Jean G. Malé ◽  
Kyle M. Turner ◽  
Manjima Doha ◽  
Ina Anreiter ◽  
Aaron M. Allen ◽  
...  

In plant–animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant–animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant–plant Cordia nodosa against herbivores. Some ant colonies are better ‘bodyguards’ than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism.


2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1295-1304 ◽  
Author(s):  
Z. Kozmik ◽  
N.D. Holland ◽  
A. Kalousova ◽  
J. Paces ◽  
M. Schubert ◽  
...  

On the basis of developmental gene expression, the vertebrate central nervous system comprises: a forebrain plus anterior midbrain, a midbrain-hindbrain boundary region (MHB) having organizer properties, and a rhombospinal domain. The vertebrate MHB is characterized by position, by organizer properties and by being the early site of action of Wnt1 and engrailed genes, and of genes of the Pax2/5/8 subfamily. Wada and others (Wada, H., Saiga, H., Satoh, N. and Holland, P. W. H. (1998) Development 125, 1113–1122) suggested that ascidian tunicates have a vertebrate-like MHB on the basis of ascidian Pax258 expression there. In another invertebrate chordate, amphioxus, comparable gene expression evidence for a vertebrate-like MHB is lacking. We, therefore, isolated and characterized AmphiPax2/5/8, the sole member of this subfamily in amphioxus. AmphiPax2/5/8 is initially expressed well back in the rhombospinal domain and not where a MHB would be expected. In contrast, most of the other expression domains of AmphiPax2/5/8 correspond to expression domains of vertebrate Pax2, Pax5 and Pax8 in structures that are probably homologous - support cells of the eye, nephridium, thyroid-like structures and pharyngeal gill slits; although AmphiPax2/5/8 is not transcribed in any structures that could be interpreted as homologues of vertebrate otic placodes or otic vesicles. In sum, the developmental expression of AmphiPax2/5/8 indicates that the amphioxus central nervous system lacks a MHB resembling the vertebrate isthmic region. Additional gene expression data for the developing ascidian and amphioxus nervous systems would help determine whether a MHB is a basal chordate character secondarily lost in amphioxus. The alternative is that the MHB is a vertebrate innovation.


2020 ◽  
Vol 21 (6) ◽  
pp. 1934 ◽  
Author(s):  
Stefano Barone ◽  
Patrizia Sarogni ◽  
Roberto Valli ◽  
Maria Michela Pallotta ◽  
Gazzi Silvia ◽  
...  

The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of aneuploid pregnancies. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. To gain new insight into the molecular basis of age-related chromosome missegregation in human oocytes, we combined the transcriptome profiles of twenty single oocytes (derived from females divided into two groups according to age <35 and ≥35 years) with their chromosome status obtained by array comparative genomic hybridization (aCGH). Furthermore, we compared the transcription profile of the single oocyte with the surrounding cumulus cells (CCs). RNA-seq data showed differences in gene expression between young and old oocytes. Dysregulated genes play a role in important biological processes such as gene transcription regulation, cytoskeleton organization, pathways related to RNA maturation and translation. The comparison of the transcription profile of the oocyte and the corresponding CCs highlighted the differential expression of genes belonging to the G protein-coupled receptor superfamily. Finally, we detected the loss of a X chromosome in two oocytes derived from women belonging to the ≥35 years age group. These aneuploidies may be caused by the detriment of REEP4, an endoplasmic reticulum protein, in women aged ≥35 years. Here we gained new insight into the complex regulatory circuit between the oocyte and the surrounding CCs and uncovered a new putative molecular basis of age-related chromosome missegregation in human oocytes.


Sign in / Sign up

Export Citation Format

Share Document