Characterization of Plant-Fungal Interactions Involving Necrotrophic Effector-Producing Plant Pathogens

Author(s):  
Timothy L. Friesen ◽  
Justin D. Faris
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5553
Author(s):  
Loreto Robles-Hernández ◽  
Nora A. Salas-Salazar ◽  
Ana C. Gonzalez-Franco

Previous studies of Ganoderma lucidum have focused on its medicinal applications. Limited information is available about its antibacterial activity against plant pathogens. Thus, the goal of this study was to purify and characterize the antibacterial activity against plant pathogenic bacteria from culture fluids of G. lucidum. The nature of the bioactive components was determined using heat boiling, organic solvents, dialysis tubing, gel exclusion chromatography (GEC), proteinase sensitivity, HPLC, HPLC-APCI-MS, and GC-MS. The bioactive compounds were neither lipid, based on their solubility, nor proteic in nature, based on proteinase digestion and heat stability. The putative-bioactive polysaccharides have molecular weights that range from 3500 to 4500 Daltons as determined by dialysis tubing, GEC and APCI-MS analysis. The composition of the antibacterial compounds was determined by GC-MS. This is the first report of small polysaccharides produced by G. lucidum with activity against bacterial plant pathogens.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009315
Author(s):  
Marylee L. Kapuscinski ◽  
Nicholas A. Bergren ◽  
Brandy J. Russell ◽  
Justin S. Lee ◽  
Erin M. Borland ◽  
...  

Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention’s Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences. These viruses had been collected over 66 years from 27 countries from vertebrates and arthropods representing 37 genera. Many of the viruses had been characterized serologically and through experimental infection of animals but were isolated in the pre-sequencing era. We took advantage of our unusually large sample size to systematically evaluate genomic characteristics of these viruses, including reassortment, and co-infection. We corroborated our findings using several independent molecular and virologic approaches, including Sanger sequencing of 197 genome segments, and plaque isolation of viruses from putative co-infected virus stocks. This study contributes to the described genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging human pathogenic bunyaviruses.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marwa Laribi ◽  
Alireza Akhavan ◽  
Sarrah M'Barek ◽  
Amor Yahyaoui ◽  
Stephen Ernest Strelkov ◽  
...  

Pyrenophora tritici-repentis (Ptr) causes tan spot, an important foliar disease of wheat. A collection of Ptr isolates from Tunisia, located in one of the main secondary centers of diversification of durum wheat, was tested for phenotypic race classification based on virulence on a host differential set, and for the presence of the necrotrophic effector (NE) genes ToxA, ToxB , and toxb by PCR analysis. While races 2, 4, 5, 6, 7, and 8 were identified according to their virulence phenotypes, PCR testing indicated the presence of ‘atypical’ isolates that induced necrosis on the wheat differential ‘Glenlea’, but lacked the expected ToxA gene, suggesting the involvement of other NEs in the Ptr/wheat interaction. Genetic diversity and the Ptr population structure were explored further by examining 59 Tunisian isolates and 35 isolates from Algeria, Azerbaijan, Canada, Iran, and Syria using 24 simple sequence repeat markers. Average genetic diversity, overall gene flow and percentage polymorphic loci were estimated as 0.58, 2.09 and 87%, respectively. Analysis of molecular variance showed that 81% of the genetic variance occurred within populations and 19% between populations. Cluster analysis by the unweighted pair group method indicated that ToxB- isolates grouped together and were distantly related to ToxB+ isolates. Based on Nei’s analysis, the global collection clustered into two distinct groups according to their region of origin. The results suggest that both geographic origin and the host-specificity imposed by different NEs can lead to differentiation among Ptr populations.


Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 61 ◽  
Author(s):  
Riccardo Scotti ◽  
Alex L. Mitchell ◽  
Catello Pane ◽  
Rob D. Finn ◽  
Massimo Zaccardelli

While the control of soil-borne phytopathogenic fungi becomes increasingly difficult without using chemicals, concern over the intensive use of pesticides in agriculture is driving more environmentally sound crop protection managements. Among these approaches, the use of compost to suppress fungal diseases could have great potential. In this study, a multidisciplinary approach has been applied to characterize microbiota composition of two on-farm composts and assess their suppress and biostimulant activities. The on-farm composting system used in this study was able to produce two composts characterized by an antagonistic microbiota community able to suppress plant pathogens and biostimulate plant growth. Our results suggest a potential role for Nocardiopsis and Pseudomonas genera in suppression, while Flavobacterium and Streptomyces genera seem to be potentially involved in plant biostimulation. In conclusion, this study combines different techniques to characterize composts, giving a unique overview on the microbial communities and their role in suppressiveness, helping to unravel their complexity.


2017 ◽  
Vol 63 (5) ◽  
pp. 411-426 ◽  
Author(s):  
Rowida Mohamed ◽  
Emma Groulx ◽  
Stefanie Defilippi ◽  
Tamara Erak ◽  
James T. Tambong ◽  
...  

Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. To gain insight into the determinants responsible for their suppressive effects, we assayed composts to (i) isolate and identify beneficial antagonistic bacteria, (ii) quantify their antifungal and anti-oomycetal activities, (iii) extract inhibitory compounds produced by the bacteria, and (iv) identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the genera Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and (or) Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and (or) conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are responsible, at least in part, for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 882
Author(s):  
Shachar Jerushalmi ◽  
Marcel Maymon ◽  
Aviv Dombrovsky ◽  
Stanley Freeman

The use of and research on medical cannabis (MC) is becoming more common, yet there are still many challenges regarding plant diseases of this crop. For example, there is a lack of formal and professional knowledge regarding fungi that infect MC plants, and practical and effective methods for managing the casual agents of disease are limited. The purpose of this study was to identify foliar, stem, and soilborne pathogens affecting MC under commercial cultivation in Israel. The predominant major foliage pathogens were identified as Alternaria alternata and Botrytis cinerea, while the common stem and soilborne pathogens were identified as Fusarium oxysporum and F. solani. Other important fungi that were isolated from foliage were those producing various mycotoxins that can directly harm patients, such as Aspergillus spp. and Penicillium spp. The sampling and characterization of potential pathogenic fungi were conducted from infected MC plant parts that exhibited various disease symptoms. Koch postulates were conducted by inoculating healthy MC tissues and intact plants with fungi isolated from infected commercially cultivated symptomatic plants. In this study, we report on the major and most common plant pathogens of MC found in Israel, and determine the seasonal outbreak of each fungus.


Sign in / Sign up

Export Citation Format

Share Document