Bioactive Compounds of Guava (Psidium guajava L.)

Author(s):  
Arumugam Vijaya Anand ◽  
Shanmugam Velayuthaprabhu ◽  
Rengasamy Lakshminarayanan Rengarajan ◽  
Palanisamy Sampathkumar ◽  
Ramalingam Radhakrishnan
Author(s):  
Yakubu Gambo Hamza ◽  
Aminu Ibrahim Danyaya ◽  
Mudassir Lawal

Introduction: Cholera is a destructive disease that causes extreme and intense water loss in the body. It takes between 12 hours and 5 days for an individual to show symptoms after ingesting contaminated food or water. It causes acute watery diarrhea in children and adults and if left untreated, it can lead to death within hours. Unfortunately, children are the most severely affected. In this study, molecular interactions of 24 bioactive compounds of Psidium guajava leaves against Vibrio cholerae targets proteins namely: Alanine racemase (PDB ID: 4BEQ), Cholera enterotoxin, A chain (PDB ID: 1S5F) and ToxT (PDB ID: 3GBG) were evaluated. Methods: Molecular docking study was conducted and the 3D structures of bioactive compounds, Enzymes and the Enzyme-ligand interaction were visualized while Swiss ADME was employed to assess other physiochemical properties of these bioactive compounds. Results and Discussion: The results from the molecular docking revealed that five bioactive compounds showed promising inhibitory activity, which include Spathulenol (Binding energy; -7.5, -6.5 and -9.1 kcal/mol in 4BEQ, 1S5F and 3GBG ), Humulene oxide II (Binding energy; -7.1, -6.0 and -8.5 kcal/mol in 4BEQ, 1S5F and 3GBG), Globulol(-)-Globulol were -7.2, -6.5 and -9.0 kcal/mol in 4BEQ, 1S5F and 3GBG), Cadala-1(10),3,8-triene (Binding energy; -7.8, -6.8 and -9.8 kcal/mol in 4BEQ, 1S5F and 3GBG) and Bicyclo[5.3.0]decane, 2-methylene-5-(1-methylvinyl)-8-methyl (Binding energy; -6.9, -6.7 and -9.4 kcal/mol in 4BEQ, 1S5F and 3GBG) respectively. Conclusion: In this study, it has been revealed that the carefully chosen bioactive compounds have the potential to be used alone or in combination with other natural products for developing potent antibacterial drugs (against cholera). They can be further subjected to fractionation and isolation to confirm their activity towards in vitro and in vivo studies and can be commercialized as a potent antibacterial agent.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shaik Shaheena ◽  
Anjani Devi Chintagunta ◽  
Vijaya Ramu Dirisala ◽  
N. S. Sampath Kumar

AbstractGuava is considered as poor man’s apple rich in phytochemicals with medicinal value and hence it is highly consumed. Gas chromatography–mass spectroscopy (GC–MS) analysis of guava leaf extract revealed the presence of various bioactive compounds with antimicrobial, antioxidant, anticancer, and antitumor properties. Hence, it is used in tooth paste formulations along with other ingredients such as Acacia arabica gum powder, stevia herb powder, sea salt, extra virgin coconut oil, peppermint oil in the present study. Three formulations F1, F2 and F3 have been made by varying the concentration of these ingredients and the prepared formulations were studied for their antimicrobial activity and physico-chemical parameters such as pH, abrasiveness, foaming activity, spreading and cleaning ability. Among these, F3 showed significant antioxidant and antimicrobial properties, minimal cytotoxicity, maximum spreadability and very high cleaning ability. This study surmises that the herbal toothpaste formulation is greener, rich in medicinal values and imparts oral hygiene.


2014 ◽  
Vol 34 (3) ◽  
pp. 485-492 ◽  
Author(s):  
Ana Maria Athayde Uchôa-thomaz ◽  
Eldina Castro Sousa ◽  
José Osvaldo Beserra Carioca ◽  
Selene Maia De Morais ◽  
Alessandro De Lima ◽  
...  

2011 ◽  
Vol 17 (3) ◽  
pp. 205-212 ◽  
Author(s):  
W. Thuaytong ◽  
P. Anprung

This research involves the comparison of bioactive compounds, volatile compounds and prebiotic activity of white guava (Psidium guajava L.) cv. Pansithong and red guava cv. Samsi. The antioxidant activity values determined by 2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays were 10.28 µg fresh weight (fw)/µg DPPH and 78.56 µg Trolox equivalent (TE)/g fw for white guava and 7.82 µg/µg DPPH, fw and 111.06 µg TE/g fw for red guava. Ascorbic acid contents were 130 and 112mg/100g fw total phenolics contents 145.52 and 163.36 mg gallic acid equivalents (GAE)/100 g fw and total flavonoids contents 19.06 and 35.85 mg catechin equivalents (CE)/100 g fw, in white and red guava, respectively. Volatile compounds in guava were analyzed by the solid-phase microextraction (SPME)/gas chromatography (GC)/mass spectrometry (MS) method. The major constituents identified in white and red guavas were cinnamyl alcohol, ethyl benzoate, ß-caryophyllene, (E)-3-hexenyl acetate and α-bisabolene. Prebiotic activity scores for Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 were 0.12 and 0.28 in white guava, respectively, and 0.13 and 0.29 in red guava, respectively.


Author(s):  
Arumugam Vijaya Anand ◽  
Shanmugam Velayuthaprabhu ◽  
Rengasamy Lakshminarayanan Rengarajan ◽  
Palanisamy Sampathkumar ◽  
Ramalingam Radhakrishnan

2020 ◽  
Author(s):  
Ika Nur Fitriani ◽  
Wiji Utami ◽  
Adi Tiara Zikri ◽  
Pugoh Santoso

Abstract Background Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2. COVID-19 has devastating effects on people in all countries and getting worse. We aim to investigate an in-silico docking analysis of phytochemical compounds from medicinal plants that used to combat inhibition of the COVID-19 pathway. There are several phytochemicals in medicinal plants, however, the mechanism of bioactive compounds remains unclear. These results are obtained from in silico research provide further information to support the inhibition of several phytochemicals. Methods Molecular docking used to determine the best potential COVID-19 M pro inhibitor from several bioactive compounds in Moringa oleifera, Allium cepa, Cocos nucifera, Psidium guajava, and Eucalyptus globulus. Molecular docking was conducted and scored by comparison with standard drugs remdesivir. ADME properties of selected ligands were evaluated using the Lipinski Rule. The interaction mechanism of the most recommended compound predicted using the STITCH database. Results There was no recommended compound in Moringa oleifera as a potential inhibitor for COVID-19. Oleanolic acid in Allium cepa, α-tocotrienol in Cocos nucifera, asiatic acid in Psidium guajava and culinoside in Eucalyptus globulus were the most recommended compound in each medicinal plant. Oleanolic acid was reported to exhibit anti-COVID-19 activity with binding energy was − 9.20 kcal/mol. This score was better than remdesivir as standard drug. Oleanolic acid interacted through the hydrogen bond with HIS41, THR25, CYS44, GLU166. Oleanolic acid binding with CASP-3, CASP-9, and XIAP signaling pathway. Conclusions Oleanolic acid in Allium cepa found as a potential inhibitor of COVID-19 M-pro that should be examined in future studies. These results suggest that oleanolic acid may be useful in COVID-19 treatment.


Sign in / Sign up

Export Citation Format

Share Document