Cost-Effective Green Materials for the Removal of Pesticides from Aqueous Medium

Author(s):  
Nazia Tarannum ◽  
Rizwan Khan
2021 ◽  
Author(s):  
Gunture ◽  
Jaidev Kaushik ◽  
Deepika Saini ◽  
Ravindra Singh ◽  
Prashant Dubey ◽  
...  

A simple cost effective isolation method has been described for the extraction of surface-adhered blue–green fluorescent carbon material from the diesel soot and used them for the selective sensing of Fe(iii) and toxic Hg(ii) metal ions in aqueous medium.


2009 ◽  
Vol 15 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Nagaraju Rajendraprasad ◽  
Basavaiah Vinay

Two simple, rapid, reliable and cost-effective methods based on titrimetry in non-aqueous medium are described for the determination of olanzapine in pharmaceuticals. In these methods, the drug dissolved in the glacial acetic acid was titrated with the acetous perchloric acid with visual and potentiometric end point detection, crystal violet being used as the indicator for visual titration. The methods are applicable over 1-15 mg range of olanzapine. The procedures were applied to determine olanzapine in pharmaceutical products and the results were found to be in a good agreement with those obtained by the reference method. Associated pharmaceutical materials did not interfere. The precision results, expressed by inter-day and intra-day relative standard deviation values, were satisfactory, higher than 2%. The accuracy was satisfactory as well. The methods proved to be suitable for the analysis of olanzapine in bulk drug and in tablets. The accuracy and reliability of the methods were further ascertained by recovery studies via a standard addition technique with percent recoveries in the range 97.51-103.7% with a standard deviation of less than 2%.


Author(s):  
Piyush Gupta ◽  
Garima Nagpal ◽  
Namrata Gupta

Abstract Background The water supplies are hindered because aquatic resources have constrained with natural and man-made pollution activities in terms of releasing huge amounts of contaminants from different point and non-point sources across the globe. The industries like metal plating, batteries, paint, fertilizers, tanneries, textile industries, dyeing industries, mining operations, and paper industries discharge their effluents into the environment directly or indirectly, and hence, they are considered as the key sources of heavy metals contamination in water resources. Heavy metals are inorganic, non-biodegradable, persistent, and having a tendency to get accumulated in biotic and abiotic components of environment as compared to organic pollutants. Some heavy metal cations, for example, mercury, arsenic, cadmium, zinc, lead, nickel, copper, and chromium, are carcinogenic in nature and so, lethal. There are growing health concerns due to toxic impacts of heavy metals on every genre of ecosystem. To deal with the bottleneck situation, it is highly imperative to search a feasible solution for heavy metal remediation in water in context of preventing amalgamation of noxious contaminants in food web. Different methods are exercised for the remediation of such impurities from its solutions. One method, i.e. adsorption is found to be the simplest, economical, efficient, and eco-friendly in this context. Main body Geopolymers exhibit heterogeneous amorphous microstructure and wide surface area. The compatibility for depollution and the performance of these materials mainly depend upon their preparation methods, composition, and microstructure. Fly ash-based geopolymer may serve as a better alternate to various cost-effective adsorbents and it will be a proven environmentally viable, waste to money solution by consuming heaps of fly ash waste for the adsorbent modified by using fly ash. The possible utilization of wastes from several industries is a matter of concerned sustainability benefits. This study shows that fly ash-based geopolymers have the potential to cope up with the problems and risk factors associated with the fly ash waste management and it would be the utmost scientific panacea in the field of removing toxins from aqueous medium and maintain environmental health in the future. Short conclusions The literature available in different databases is very limited pertaining to heavy metal remediation using fly ash-based geopolymers. Keeping all the factors in mind, this article is an attempt to summarize relevant informations related to work done on fly ash-based geopolymers for treating aqueous solutions comprising heavy metals.


2021 ◽  
Vol 10 (3) ◽  
pp. 2525-2534

An efficient, green, and cost-effective synthesis of benzylpyrazolyl coumarin by one-pot four-component condensation of hydrazine hydrate or phenyl hydrazine, ethyl acetoacetate, aromatic aldehyde, and 4-hydroxycoumarin in the presence of Amberlite IR-120 as a catalyst in an aqueous medium has been reported. Shorter reaction time, operation simplicity, low cost of catalyst, and aqueous medium are key advantages of this method for synthesizing benzylpyrazolyl coumarin in moderate to high yield.


2021 ◽  
Author(s):  
SAVITHA D P ◽  
Deepa Sebastian ◽  
Anjali Krishna G ◽  
P. V. Mohanan

A novel schiff base ligand 3-(2-Amino-4, 5-dimethyl-phenylimino)-5-phenyl-1, 3-dihydro-indol-2-one (MPD 5MI) and was characterized using spectroscopic methods including UV visible, Infrared, 1H-NMR, 13C-NMR and mass spectrometry. The essential fluorescence properties such...


2014 ◽  
Vol 1020 ◽  
pp. 3-8 ◽  
Author(s):  
Marek Jašek ◽  
Jiri Brozovsky ◽  
Lucie Mynarzová ◽  
Jan Hurta

A development of fiber-cement composites is often focused on cost-effective and environmentally friendly materials (so-called green materials). Production of this material should produce less waste and it also should use less energy and less natural sources. There are numerous approaches to the development of green composites. One of the possible ways is a utilization of fly ashes instead of the cement part of composite. The paper discusses a development of green cementitious composite which incorporated fly ash materials produced in the Moravian-Silesian region as a partial replacement of the cement part of the composite.


2017 ◽  
Vol 1 (7) ◽  
pp. 1384-1388 ◽  
Author(s):  
Partha Samanta ◽  
Priyanshu Chandra ◽  
Aamod V. Desai ◽  
Sujit K. Ghosh

Charge-selective capture of organic cationic dye molecules (water pollutants) from an aqueous medium has been demonstrated using a cost-effective and stable microporous hyper-cross-linked material (HCP-91@Na).


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1275
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Rajendran J. Varghese ◽  
...  

Nanobiotechnology is a promising field in the development of safe antibiotics to combat the increasing trend of antibiotic resistance. Nature is a vast reservoir for green materials used in the synthesis of non-toxic and environmentally friendly nano-antibiotics. We present for the first time a facile, green, cost-effective, plant-mediated synthesis of platinum nanoparticles (PtNPs) using the extract of Combretum erythrophyllum (CE) plant leaves. The extract of CE served as both a bio-reductant and a stabilizing agent. The as-synthesized PtNPs were characterized using ultraviolet-visible (UV–Vis) absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. The HR-TEM image confirmed that the PtNPs are ultrasmall, spherical, and well dispersed with an average particle diameter of 1.04 ± 0.26 nm. The PtNPs showed strong antibacterial activities against pathogenic Gram-positive Staphylococcus epidermidis (ATCC 14990) at a minimum inhibitory concentration (MIC) of 3.125 µg/mL and Gram-negative Klebsiella oxytoca (ATCC 8724) and Klebsiella aerogenes (ATCC 27853) at an MIC value of 1.56 µg/mL. The CE-stabilized PtNPs was mostly effective in Klebsiella species that are causative organisms in nosocomial infections.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 934
Author(s):  
Dimitrios Stefanakis ◽  
Themis Krasoudaki ◽  
Anastasios-Ioannis Kaditis ◽  
Asterios Bakolas ◽  
Pagona-Noni Maravelaki

In conservation science the demand of multifunctional green materials displaying water repellency, consolidation, resistance to organic pollutants and pigments is constantly increasing. This research developed a green nanocomposite exhibiting photocatalytic, hydrophobic, consolidation and self-cleaning properties. This was achieved by synthesizing a TiO2 photocatalyst enriched with carbon dots (C-dots) and successfully incorporated into a tetraethoxysilane nanocomposite modified with nano-calcium oxalate and polydimethylsiloxane. The TiO2/C-dots that were prepared with a simple, low temperature, cost-effective and large-scale procedure were assessed via analytical and spectroscopic techniques and were resulted in anatase structure ranging in size from 10 to 40 nm. Photooxidation measurements displayed that TiO2/C-dots nanoparticles could photodegrade completely Methyl Orange (MO) under UV and visible irradiation after 120 min. The photocatalytic performance of the nanocomposite with TiO2/C-dots resulted promising under UV after longer irradiation time. The degradation of MO was faster on bulk xerogels containing the TiO2/C-dots than the corresponding ones with TiO2. The treatment of concrete, limestone and lime mortars with the nanocomposite proved to be compatible with the substrates in terms of aesthetical aspects. This study demonstrates encouraging potential for large-scale production of a multifunctional protective composite that offers hydrophobicity, self-cleaning properties and consolidation to architectural surfaces.


Sign in / Sign up

Export Citation Format

Share Document