Assessment of Machining Accuracy of a WaterJet Cutter by Test Workpiece Machining

Author(s):  
Paweł Pieśko ◽  
Magdalena Zawada-Michałowska
Keyword(s):  
2018 ◽  
Vol 56 (4) ◽  
pp. 531
Author(s):  
Nguyen Anh Tuan ◽  
Vu Toan Thang ◽  
Nguyen Viet Tiep

Determining the influence of technological mode factors on machining accuracy is always an current issue in the production practice especially for grinding operations. This paper presents some research results to determine the effect of grinding parameters on grinding wheel’s wear and part’s accuracy in grinding profile for ball bearing's inner ring groove. From theoretical analysis and experimental results, the article assesses the influence of grinding mode factors on output factors. Based on that, the economic limitation wear of grinding wheel at three different grinding modes is determined.


The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Author(s):  
Yongsheng Zhao ◽  
Hongchao Wu ◽  
Congbin Yang ◽  
Ligang Cai ◽  
Zhifeng Liu

The motion accuracy of hydrostatic turntable is the key in improving the machining accuracy of heavy-duty machine tool. However, the motion accuracy of hydrostatic turntable depends not only on the offset load but also on the rotating speed of the turntable as well as the profile errors of the guide rails. In this paper, a simulation model is developed to analyze the effect of guide rail profile errors on the motion accuracy of hydrostatic turntable. The reaction forces of preload thrust bearing and hydrostatic circular oil pads are obtained based on the Reynolds equation of the lubricant film. The motion equations of hydrostatic turntable are derived in which the profile errors of two guide rails are considered. The results show that the motion accuracy of hydrostatic turntable can be affected by wavelength, amplitude of profile errors and speed, and offset load of turntable. Finally, the motion accuracy of heavy-duty hydrostatic turntable used in XCKA28105 type turning and milling composite machine tool is obtained by using the presented method. Comparing with the experimental results, the proposed model can be used to predict the machining accuracy caused by the profile errors of guide rails for any heavy-duty hydrostatic turntable.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 828
Author(s):  
Zhaolong Li ◽  
Ye Dai

This paper presents a simulation and experimental study of the structure of small holes in GH4169 alloy electrolytic ally processed by tube electrodes with different characteristic power sources. It analyzes the multi-physical field coupling relationship of flow, temperature, and electric fields within the interstitial space. The results indicate that the tube electrode electrolytic processing of the GH4169 alloy small hole structure with a pulsed power supply has more uniform temperature and current density distribution within the gap, which is beneficial to the processing accuracy and smoothness of the small hole structure. Meanwhile, SEM was used to analyze the microscopic morphology of the electrode end surface during short-circuiting, and it was concluded that as the processing continued, the electrode end surface gradually produced a non-metallic oxide layer, which destroyed the electric field of the gap and affected the processing stability. The use of high-frequency positive and negative pulse power can effectively avoid the generation of a non-metallic oxide layer. Through the combination of simulation analysis and experimental verification, it is concluded that increasing electrolyte pressure in stages can effectively improve machining accuracy and stability. The interstitial current increases as the feed rate of the tool electrode increases, and the diameter of the machined small hole decreases as it increases.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Author(s):  
Colin Viegas ◽  
Jeff Powell ◽  
Hairui Liu ◽  
Hosh Sanghera ◽  
Lynn Donoghue ◽  
...  

2014 ◽  
Vol 915-916 ◽  
pp. 31-34
Author(s):  
Qing Ping Zhang ◽  
Zheng Ru Wang ◽  
Yan Fang Wang

Vibration is one of the most important problems in laser cutting machine tool, which causes the manufacturing errors, also influences the machining accuracy of the parts. Modal analysis can calculate vibration type of structures. The paper presents how to use the powerful FEA software ANSYS to do the modal analysis on laser cutting machine tool and also studies the undamped free vibration on laser cutting machine tool. Finally, the test results and theoretical results were compared to verify the rationality of the modal, these provide theoretical base and conditions for dynamics analysis and optimal design.


2011 ◽  
Vol 130-134 ◽  
pp. 2316-2320
Author(s):  
Ke Zhang ◽  
Zheng Xing Cui ◽  
Li Ya Gai ◽  
Peng Ge ◽  
Dong Gao Cai

NC machine plays an irreplaceable role in the modern manufacturing because of its high machining processing accuracy, quality stable, flexibility. Through using the Renishaw ML10 laser interferometer detect the positioning accuracy and repositioning accuracy of X axis and Z axis of the HTC20 series of NC machine tools. According to the detection result compensate NC system to meet the machining accuracy requirement. The result shows that the error compensation of NC system is a effective method to improve the position accuracy of NC machine.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


Sign in / Sign up

Export Citation Format

Share Document