scholarly journals Linking Adaptation and Mitigation Toward a Resilient and Robust Infrastructure Sector in Kenya

Author(s):  
Onkangi Ruth ◽  
David Lagat ◽  
Ondari Lilian

AbstractSustainable city is an oxymoron to many especially in developing nations where the ever extending urban fabric has consequently degraded natural habitats, altered species composition, changed energy flows, and immensely affected biogeochemical cycles. This dims the vision of meeting the present needs with a nondecreasing level of well-being while not compromising that of the future generations to meet theirs. Nairobi as other cities in peer nations is associated with socioeconomic vulnerabilities as well as visible and “invisible” ecological problems such as pollution, climate change, spatial competition, dependency in natural capital use, and congestion. Nevertheless, this is uniquely both a problem and a solution.Nairobi has grown from a small railway station at the turn of the twentieth century to one of Africa’s largest cities. With this growth, comes an oversized ecological footprint and complex challenges of stresses and shocks. Infrastructure development in developing nations is gaining momentum. It is one of the development indicators and a major contributor to the GDP. However, it is very vulnerable financially and functionally to extreme weather events such as intense and prolonged periods of rainfall, inundation, low retreating rates of flood waters, increased temperatures, and unpredictable wind patterns. This study sought to establish the level of integration of adaptation and mitigation measures to climate change in selected infrastructure projects. It further evaluates the performance of key action plans, projects, and efforts made to enhance resilience to climate change. The study supports the integration of broad investment flows instead of the project-by-project approach.

2021 ◽  
Vol 12 ◽  
Author(s):  
Meghnath Dhimal ◽  
Dinesh Bhandari ◽  
Mandira Lamichhane Dhimal ◽  
Naviya Kafle ◽  
Prajjwal Pyakurel ◽  
...  

Climate change and variability affect virtually everyone and every region of the world but the effects are nowhere more prominent than in mountain regions and people living therein. The Hindu Kush Himalayan (HKH) region is a vast expanse encompassing 18% of the world’s mountainous area. Sprawling over 4.3 million km2, the HKH region occupies areas of eight countries namely Nepal, Bhutan, Afghanistan, Bangladesh, China, India, Myanmar, and Pakistan. The HKH region is warming at a rate higher than the global average and precipitation has also increased significantly over the last 6 decades along with increased frequency and intensity of some extreme events. Changes in temperature and precipitation have affected and will like to affect the climate-dependent sectors such as hydrology, agriculture, biodiversity, and human health. This paper aims to document how climate change has impacted and will impact, health and well-being of the people in the HKH region and offers adaptation and mitigation measures to reduce the impacts of climate change on health and well-being of the people. In the HKH region, climate change boosts infectious diseases, non-communicable diseases (NCDs), malnutrition, and injuries. Hence, climate change adaptation and mitigation measures are needed urgently to safeguard vulnerable populations residing in the HKH region.


Author(s):  
Jean Louis Weber

Environmental accounting is an attempt to broaden the scope of the accounting frameworks used to assess economic performance, to take stock of elements that are not recorded in public or private accounting books. These gaps occur because the various costs of using nature are not captured, being considered, in many cases, as externalities that can be forwarded to others or postponed. Positive externalities—the natural resource—are depleted with no recording in National Accounts (while companies do record them as depreciation elements). Depletion of renewable resource results in degradation of the environment, which adds to negative externalities resulting from pollution and fragmentation of cyclic and living systems. Degradation, or its financial counterpart in depreciation, is not recorded at all. Therefore, the indicators of production, income, consumption, saving, investment, and debts on which many economic decisions are taken are flawed, or at least incomplete and sometimes misleading, when immediate benefits are in fact losses in the long run, when we consume the reproductive functions of our capital. Although national accounting has been an important driving force in change, environmental accounting encompasses all accounting frameworks including national accounts, financial accounting standards, and accounts established to assess the costs and benefits of plans and projects. There are several approaches to economic environmental accounting at the national level. Of these approaches, one purpose is the calculation of genuine economic welfare by taking into account losses from environmental damage caused by economic activity and gains from unrecorded services provided by Nature. Here, particular attention is given to the calculation of a “Green GDP” or “Adjusted National Income” and/or “Genuine Savings” as well as natural assets value and depletion. A different view considers the damages caused to renewable natural capital and the resulting maintenance and restoration costs. Besides approaches based on benefits and costs, more descriptive accounts in physical units are produced with the purpose of assessing resource use efficiency. With regard to natural assets, the focus can be on assets directly used by the economy, or more broadly, on ecosystem capacity to deliver services, ecosystem resilience, and its possible degradation. These different approaches are not necessarily contradictory, although controversies can be noted in the literature. The discussion focuses on issues such as the legitimacy of combining values obtained with shadow prices (needed to value the elements that are not priced by the market) with the transaction values recorded in the national accounts, the relative importance of accounts in monetary vs. physical units, and ultimately, the goals for environmental accounting. These goals include assessing the sustainability of the economy in terms of conservation (or increase) of the net income flow and total economic wealth (the weak sustainability paradigm), in relation to the sustainability of the ecosystem, which supports livelihoods and well-being in the broader sense (strong sustainability). In 2012, the UN Statistical Commission adopted an international statistical standard called, the “System of Environmental-Economic Accounting Central Framework” (SEEA CF). The SEEA CF covers only items for which enough experience exists to be proposed for implementation by national statistical offices. A second volume on SEEA-Experimental Ecosystem Accounting (SEEA-EEA) was added in 2013 to supplement the SEEA CF with a research agenda and the development of tests. Experiments of the SEEA-EEA are developing at the initiative of the World Bank (WAVES), UN Environment Programme (VANTAGE, ProEcoServ), or the UN Convention on Biological Diversity (CBD) (SEEA-Ecosystem Natural Capital Accounts-Quick Start Package [ENCA-QSP]). Beside the SEEA and in relation to it, other environmental accounting frameworks have been developed for specific purposes, including material flow accounting (MFA), which is now a regular framework at the Organisation for Economic Co-operation and Development (OECD) to report on the Green Growth strategy, the Intergovernmental Panel on Climate Change (IPCC) guidelines for the UN Framework Convention on Climate Change (UNFCCC), reporting greenhouse gas emissions and carbon sequestration. Can be considered as well the Ecological Footprint accounts, which aim at raising awareness that our resource use is above what the planet can deliver, or the Millennium Ecosystem Assessment of 2005, which presents tables and an overall assessment in an accounting style. Environmental accounting is also a subject of interest for business, both as a way to assess impacts—costs and benefits of projects—and to define new accounting standards to assess their long term performance and risks.


Author(s):  
Partha Dasgupta

In this paper, I formalize the idea of sustainable development in terms of intergenerational well-being. I then sketch an argument that has recently been put forward formally to demonstrate that intergenerational well-being increases over time if and only if a comprehensive measure of wealth per capita increases. The measure of wealth includes not only manufactured capital, knowledge and human capital (education and health), but also natural capital (e.g. ecosystems). I show that a country's comprehensive wealth per capita can decline even while gross domestic product (GDP) per capita increases and the UN Human Development Index records an improvement. I then use some rough and ready data from the world's poorest countries and regions to show that during the period 1970–2000 wealth per capita declined in South Asia and sub-Saharan Africa, even though the Human Development Index (HDI) showed an improvement everywhere and GDP per capita increased in all places (except in sub-Saharan Africa, where there was a slight decline). I conclude that, as none of the development indicators currently in use is able to reveal whether development has been, or is expected to be, sustainable, national statistical offices and international organizations should now routinely estimate the (comprehensive) wealth of nations.


2021 ◽  
Author(s):  
Rebecca Priestley ◽  
Zoë Heine ◽  
Taciano L Milfont

Sea-level rise resulting from climate change is impacting coasts around the planet. There is strong scientific consensus about the amount of sea-level rise to 2050 (0.24–0.32 m) and a range of projections to 2100, which vary depending on the approach used and the mitigation measures taken to reduce carbon emissions. Despite this strong scientific consensus regarding the reality of climate change-related sea-level rise, and the associated need to engage publics in adaptation and mitigation efforts, there is a lack of empirical evidence regarding people’s understanding of the issue. Here we investigate public understanding of the amount, rate and causes of sea-level rise. Data from a representative sample of New Zealand adults showed a suprising tendency for the public to overestimate the scientifically plausible amount of sea-level rise by 2100 and to identify melting sea ice as its primary causal mechanism. These findings will be valuable for scientists communicating about sea-level rise, communicators seeking to engage publics on the issue of sea-level rise, and media reporting on sea-level rise.


2022 ◽  
pp. 354-374
Author(s):  
Renalda N. Munubi ◽  
Hieromin A. Lamtane

Over the last century, water temperatures in Lake Tanganyika have risen due to climate change, which increased thermal stratification and reduced the magnitude of nutrient availability. A rise in temperature increases the C:N:P ratio resulting in a poor algal diet. In addition, lake littoral habitat is experiencing increased sediment load due to deforestation of the watershed caused by anthropogenic activities. Sediments cover benthic algae and reduce its nutritional value, consequently affecting the foraging behavior, distribution, and growth performance of algivorous fish. Algae and algivorous fish are an important link in the lake food chain; therefore, if the rise in temperature will continue as predicted, then this may have a cascading effect for the rest of the community in the food chain including human being. This, in turn, may contribute to food insecurity at local and regional levels. To counteract this adaptation and mitigation measures such as environmental monitoring systems and creating new opportunities should be considered.


2019 ◽  
Vol 11 (24) ◽  
pp. 7224 ◽  
Author(s):  
Afshin Ghahramani ◽  
S. Mark Howden ◽  
Agustin del Prado ◽  
Dean T. Thomas ◽  
Andrew D. Moore ◽  
...  

Managed temperate grasslands occupy 25% of the world, which is 70% of global agricultural land. These lands are an important source of food for the global population. This review paper examines the impacts of climate change on managed temperate grasslands and grassland-based livestock and effectiveness of adaptation and mitigation options and their interactions. The paper clarifies that moderately elevated atmospheric CO2 (eCO2) enhances photosynthesis, however it may be restiricted by variations in rainfall and temperature, shifts in plant’s growing seasons, and nutrient availability. Different responses of plant functional types and their photosynthetic pathways to the combined effects of climatic change may result in compositional changes in plant communities, while more research is required to clarify the specific responses. We have also considered how other interacting factors, such as a progressive nitrogen limitation (PNL) of soils under eCO2, may affect interactions of the animal and the environment and the associated production. In addition to observed and modelled declines in grasslands productivity, changes in forage quality are expected. The health and productivity of grassland-based livestock are expected to decline through direct and indirect effects from climate change. Livestock enterprises are also significant cause of increased global greenhouse gas (GHG) emissions (about 14.5%), so climate risk-management is partly to develop and apply effective mitigation measures. Overall, our finding indicates complex impact that will vary by region, with more negative than positive impacts. This means that both wins and losses for grassland managers can be expected in different circumstances, thus the analysis of climate change impact required with potential adaptations and mitigation strategies to be developed at local and regional levels.


Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. eaaw9256 ◽  
Author(s):  
Michael D. Morecroft ◽  
Simon Duffield ◽  
Mike Harley ◽  
James W. Pearce-Higgins ◽  
Nicola Stevens ◽  
...  

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the needs of people, to realize potential synergies and avoid conflict between different objectives.


Author(s):  
Alice Nyawira Karuri

AbstractThe adverse effect of climate change on agriculture is well-documented and is a cause of concern for governments globally. In addition to concerns over food crop production, the economies of numerous developing countries rely heavily on cash crops. The coffee and tea sectors are key in Kenya’s economy, contributing significantly to the gross domestic product, foreign exchange, and the direct or indirect employment of millions. Farmers engaged in the production of coffee and tea are predominantly small-scale farmers, with the majority farming on less than five acres. Climate change poses a threat to the production of these two crops and by extension to the economy of Kenya and the livelihood of farmers and those employed in these sectors. This study identifies the challenges posed by climate change in the tea and coffee sectors, the adaptation and mitigation measures identified, and the scope of their implementation. The production, processing, and marketing of tea and coffee in Kenya differs widely in terms of the institutions and institutional arrangements in the two sectors. This study will therefore analyze the role played by institutions in both sectors and how this affects climate change adaptation and mitigation measures by small-scale farmers.


2009 ◽  
Vol 33 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Julia Laukkonen ◽  
Paola Kim Blanco ◽  
Jennifer Lenhart ◽  
Marco Keiner ◽  
Branko Cavric ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document