Techniques to Assess the Corrosion Resistance and Corrosion Rate of the Steel Embedded in Concrete

Author(s):  
P. Chandru ◽  
J. Karthikeyan ◽  
C. Natarajan
Alloy Digest ◽  
1963 ◽  
Vol 12 (8) ◽  

Abstract Cooper Alloy 22W is a high strength, heat resistant casting alloy with a low creep rate. It is recommended for heat applications where stress and hot gas corrosion rate are very high. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-146. Producer or source: Cooper Alloy Corporation.


2014 ◽  
Vol 896 ◽  
pp. 245-248 ◽  
Author(s):  
Candra Kurniawan ◽  
Hayati M.A. Sholihat ◽  
Kemas Ahmad Zaini Thosin ◽  
Muljadi ◽  
Prijo Sardjono

Despite of its excellence magnetic quality, one of the critical properties of PrFeB based permanent magnet is a low corrosion resistance so it can be oxidized easily which can reduce its magnetic properties. In this study, Nickel coating has been performed for bonded PrFeB magnet by the electroplating method using Nickel-Watts bath-type as the electrolyte to improve the corrosion resistance. The varying amount of the electrolyte compounds used to have the optimized composition indicated by the corrosion resistance measurement. The solution composition used was NiSO4 (230-380 g/L), NiCl2 (30-60 g/L), and H3BO3 (30 and 45 g/L) with a fixed value of other parameters. Characterization used including the immersion corrosion test, microstructure analysis, and magnetic properties. Based on the corrosion rate measurement, the highest corrosion resistant of Nickel coated PrFeB magnet achieved from the electrolyte composition of NiSO4: NiCl2: H3BO3 = 380: 60: 30 g/L with a plating time and current density (J) of 60 minutes and 40 mA/cm2 respectively. The corrosion rate data showed that the Nickel metal coating can improve the corrosion resistance of bonded PrFeB magnet up to 29 times than of the substrate. The SEM images showed that the thickness of the Nickel coating on the optimum electrolyte composition was in average value of 35.1 µm. The overall samples has a magnetic remanence value (Br) reached ≥ 6 kG, so it has enough properties to be applied in devices such as generators and electric motors.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


2017 ◽  
Vol 13 (10) ◽  
pp. 5905-5913
Author(s):  
S. Saravanan ◽  
P.Senthil Kumar ◽  
T. Palanisamy ◽  
M. Ravichandran ◽  
V. Anandakrishnan ◽  
...  

AA6063-TiC composites have several weight percentages up to 9 wt. % were fabricated by using stir casting route method. The effects of the weight percentage of TiC particles on the microstructures and corrosion behavior of AA6063-TiC composites were studied. The results revealed that the AA6063-TiC composites exhibited higher density than the AA6063 matrix. The accelerated corrosion tests of AA6063-TiC composites in 3.5 wt. % NaCl aqueous solution at room temperature, the AA6063-TiC composites have better corrosion resistance than the AA6063 matrix. Increasing the weight percentage of the TiC particles to reduces the corrosion rate of the AA6063-TiC composites. In this process corrosion rate of 0.4402 mm/year for AA6063 matrix, 0.3891 mm/year for 3 wt. % , 0.3568 mm/year for 6 wt. % and 0.3062 mm/year for 9 wt. % of TiC particles respectively. The poor corrosion resistance of the composites can be attributed to the galvanic effects between the AA6063 matrix and TiC reinforcement.


2013 ◽  
Vol 12 (3) ◽  
pp. 231-238
Author(s):  
Teresa Szymura ◽  
Wojciech Adamczyk

Corrosion testing was performed on structural steel of a cooling tower in the environment of cooling water containing ammonium sulfates and ammonium chloride. The test were performed using gravimetric and electrochemical methods with the application of a potentiostat. The analyses clearly showed that the corrosion rate is higher in solutions that contain ammonium sulfate and that the S235JRG2 steel exhibits higher corrosion resistance in this environment.


2019 ◽  
Vol 21 (3) ◽  
pp. 127
Author(s):  
Hardi Hidayat ◽  
Budi Setyahandana ◽  
Yohannes Sardjono ◽  
Yulwido Adi

The purpose of this study is to determine the value of corrosion rate influenced by coastal environment and seawater to nickel as a collimator base material for the application of boron neutron capture therapy (BNCT). In this research, the authors used 99.9% pure nickel as the reference material. Corrosion testing was carried out to determine the rate of corrosion of nickel as a base material for BNCT. After the specimens were formed, the test specimens were then corroded for 12 weeks, with various conditions such as indoor, outdoor environment, static seawater, and moving seawater. The results of this study indicated that in corrosion testing with indoor condition, the corrosion rate values are 0.61-1.00 mpy. For outdoor condition, the corrosion rate is 0.89-1.34 mpy. Meanwhile, at static seawater conditions, the corrosion rate is 0.97-1.24 mpy. Lastly, for moving seawater condition, the corrosion rate is 1.64-1.91 mpy. The results showed that corrosion resistance was relatively the same for all nickel exposed to corrosion in the coastal environment. Therefore, in regards to corrosion resistance, using nickel as a collimator base material for BNCT applications is considered as safe.Keywords: BNCT, Nickel, Corrosion, Coastal Environtment, Sea Water


2021 ◽  
Vol 40 (1) ◽  
pp. 56-62
Author(s):  
M. Abdullahi ◽  
L.S. Kuburi ◽  
P.T. Zubairu ◽  
U. Jabo ◽  
A.A. Yahaya ◽  
...  

This paper, studied the effect of heat treatment and anodization on corrosion resistance of aluminum alloy 7075 (AA7075), with a view to improving its corrosion resistance. Microstructure and micro hardness of the anodic film of the samples were studied with the aid of optical metallurgical microscope and automated micro hardness testing machine. Linear polarization methods were used to assess the corrosion behaviour of the alloy in 0.5M HCl. The microstructure of the annealed sample showed formation of dendrites while precipitation hardened samples in palm kernel oil and SAE 40 engine oil showed precipitates of MgZn2. The SEMS result showed pores and micro cracks on the surfaces of the anodized samples, with the as cast and anodized sample in sulfuric acid exhibiting most compact with few pores. The as cast and sulfuric acid anodized sample shows highest micro hardness value of 205.33 HV, while the least value of 150.67 HV was recorded in sample precipitation hardened in SAE 40 engine oil and anodized in sulfuric acid. Analysis of the potentiodynamic polarization data and curves showed a linear relationship (decrease in icorr, decreases the corrosion rate) between current density and the corrosion rate in all the samples. Higher polarization resistance of 15.093 Ω/cm2 was recorded by the as cast and Sulfuric acid (SA) anodized sample while the precipitation treated in SAE 40 engine oil plus SA anodized sample recorded lowest polarization resistance of 5.2311 Ω/cm2. Heat treatment alone improves corrosion resistance of AA 7075 in 0.5 M HCl solution but heat treatment plus SA anodization does not improve corrosion resistance in the same environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Hui Fan ◽  
Yangpei Zhao ◽  
Shankui Wang

An effective method to improve corrosion resistance for the nickel coating on the stainless steel(1Cr18Ni9) is described. The nickel coating was predeposited on the 1Cr18Ni9 by using the jet electrodeposition technology. Then the laser remelting was conducted on the predeposited Ni coating in order to strengthen the coating’s microstructure and the interface between the substrate and the Ni coating. The experimental results revealed that, at current density of 40 A/dm2, the deposited coating had the optimal corrosion resistance because of refined grains and dense interior-structure. After laser remelting, the bonding state between the coating and substrate evolved to a new metallurgical combination from originally mechanical combination. The corrosion rate comparison indicated that Ni coating with compound process of jet electrodeposition and laser remelting had higher corrosion resistance compared with bare 1Cr18Ni9 as well as jet electrodeposited Ni coating.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yue Zhang ◽  
Jun Xiao ◽  
Shaoguang Yang ◽  
Aimin Zhao

Purpose High silicon iron-based alloys possess excellent corrosion resistance in certain specific media, but the effects of electrolysis parameters on corrosion resistance remain unknown. This study aims to guide the development and application of an extra-low carbon high silicon iron-based alloy (ECHSIA) in electrode plates. Design/methodology/approach The corrosion resistance of ECHSIA and a conventional high-silicon cast iron (CHSCI) was analyzed through experimental characterizations. The morphology was observed by scanning electron microscopy. The influence of electrolysis parameters on the corrosion resistance of ECHSIA was investigated through corrosion experiments. The relationship between the electrolysis parameters and the corrosion resistance of ECHSIA was statistically investigated using the grey correlation analysis method. Findings The corrosion resistance of the ECHSIA is better than that of the CHSCI. The corrosion rate showed an increasing tendency with the increase in the nitric acid concentration (CHNO3), electrolyte temperature and current density. The grey correlation analysis results showed that the CHNO3 was the main factor affecting the corrosion rate of the ECHSIA. Originality/value An ECHSIA with a single ferrite microstructure was prepared. This study provides a guideline for the future development and application of ECHSIAs as electrode plates.


2021 ◽  
Vol 1016 ◽  
pp. 592-597
Author(s):  
Masato Ikoma ◽  
Taiki Morishige ◽  
Tetsuo Kikuchi ◽  
Ryuichi Yoshida ◽  
Toshihide Takenaka

Mg alloys are very attractive materials for transportation industry due to their toughness and lightness. Recycling Mg alloys is desired for energy saving that otherwise would be required to produce its primary metal. However, secondary produced Mg tends to contain a few impurity elements that deteriorate its corrosion resistance. For example, contamination of Mg alloy by Cu induces second phase of Mg2Cu and it works as strong cathode, resulting in the corrosion rate rapidly increasing. It was previously reported that the corrosion resistance of Mg with impurity Cu was remarkably improved by addition of alloying element Zn. Addition of Zn into Mg formed MgZn2 phase and incorporated Cu into MgZn2 phase instead of Mg2Cu formation. In this way, since Zn serves to improve the corrosion resistance of Mg, Mg alloy with high Zn concentration may form a lot of MgZn2 and may have better corrosion resistance even with high Cu concentration. In this work, the corrosion behavior of Mg-6mass%-1mass%Al (ZA61) with different Cu content up to 1mass% was investigated. As a result, ZA61-1.0Cu had much lower corrosion rate compared to Mg-0.2%Cu and the corrosion rate was almost the same as that of pure Mg.


Sign in / Sign up

Export Citation Format

Share Document