Reducing Fuel Consumption During Diesel Engine Operation on Idle Mode

Author(s):  
A. N. Gots ◽  
V. F. Guskov
Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2017 ◽  
Vol 2 (3) ◽  
pp. 15-19
Author(s):  
Александр Уханов ◽  
Aleksandr Ukhanov ◽  
Денис Уханов ◽  
Denis Ukhanov ◽  
Евгений Сидоров ◽  
...  

The mode of independent idling, characterized by an impaired process flow, unproductive fuel consumption and increased emissions of harmful substances into the atmosphere, is the most unfavorable mode of the diesel engine operation. Therefore, the aim of the research is to reveal the peculiarities of the tractor diesel engine operation by the camelina-mineral fuel in the mode of independent idling. Camelina-mineral fuel is a mixture of camelina oil and mineral diesel fuel in certain ratio of these components. To assess the possibility of using the camelina oil as biological component of diesel mixed fuel, an experimental study of the D-243 diesel engine in idling mode was carried out, and the degree of influence of the different ratio of the components of the mixed fuel on its parameters was determined. The researches were carried out with the diesel fuel on the L-0.2-62 mineral fuel and the camelina-mineral fuel with a ratio of the biological and mineral components: 25% RyzhM + 75% DT; 50% RyzhM + 50% DT; 75% RyzhM + 25% DT; 90% RyzhM + 10% DT and 90% RyzhM + 10% DT (US). For the parameters of the diesel, the excess air factor, the filling ratio of the diesel cylinder with fresh charge, the maximum cycle pressure, the hourly fuel consumption, smoke and carbon monoxide content in the exhaust gases are taken. It is established that when the diesel engine works on camelina-mineral fuel mode the minimum sustainable speed of the crankshaft idle speed 800 min-1 the values of maximum cycle pressure (6.3 MPa) and the filling ratio of the cylinders of a diesel engine the fresh charge (0,87) remain unchanged. The coefficient of excess air, increasing in mixed fuel shares of camelina oil to 90%, reduced from 7.187 to 4.619, while fuel consumption increases of 1.1 kg/h 2 kg/h. The best environmental indicators are observed when working on red-and-mineral fuel 50% RyzhM + 50% DT. Handling mixed fuel with ultrasound reduces fuel consumption, smoke and content of carbon oxide in the exhaust gas relative to the mixed fuel not treated with ultrasound.


2016 ◽  
Vol 166 (3) ◽  
pp. 9-16
Author(s):  
Maria Bogarra-Macias ◽  
Omid Doustdar ◽  
Mohammed Fayad ◽  
Miroslaw Wyszyński ◽  
Athanasios Tsolakis ◽  
...  

Current targets in reducing CO2 and other greenhouse gases as well as fossil fuel depletion have promoted the research for alternatives to petroleum-based fuels. Pyrolysis oil (PO) from biomass and waste oil is seen as a method to reduce life-cycle CO2, broaden the energy mix and increase the use of renewable fuels. The abundancy and low prices of feedstock have attracted the attention of biomass pyrolysis in order to obtain energy-dense products. Research has been carried out in optimising the pyrolysis process, finding efficient ways to convert the waste to energy. However, the pyrolysis products have a high content in water, high viscosity and high corrosiveness which makes them unsuitable for engine combustion. Upgrading processes such as gasification, trans-esterification or hydro-deoxynegation are then needed. These processes are normally costly and require high energy input. Thus, emulsification in fossil fuels or alcohols is being used as an alternative. In this research work, the feasibility of using PO-diesel emulsion in a single-cylinder diesel engine has been investigated. In-cylinder pressure, regulated gaseous emissions, particulate matter, fuel consumption and lubricity analysis reported. The tests were carried out of a stable non-corrosive wood pyrolysis product produced by Future Blends Ltd of Milton Park, Oxfordshire, UK. The product is trademarked by FBL, and is a stabilized fraction of raw pyrolysis oil produced in a process for which the patent is pending. The results show an increase in gaseous emissions, fuel consumption and a reduction in soot. The combustion was delayed with the emulsified fuel and a high variability was observed during engine operation.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified. Key words: diesel fuel, diesel fuel additives, engine efficiency.


Author(s):  
Nadezhda Anatolievna Pivovarova ◽  
Alexander Fedorovich Dorokhov ◽  
Vasily Vladimirovich Shakhov ◽  
Galina Vladimirovna Vlasova ◽  
Yuliya Shirbalaevna Bayramova

The article considers the influence of the fuel magnetic treatment onto the operation of a ship engine. Many shipowners are interested in reducing their fuel consumption. Fuel efficiency is one of the most important indicators of a ship's engine. There are various methods to improve the fuel quality. In addition to traditional physical and chemical methods, wave effects are also used, for example, a magnetic treatment. The magnetic treatment effectiveness for diesel fuels has been confirmed by many studies. The analysis of the influence of the magnetic treatment of diesel fuel with a magnetic induction of 0.4 T on the operation of a 4CHN9.5/11 marine engine under different modes is carried out. Magnetic treatment of the fuel was carried out by creating a magnetic field with permanent magnets NdFeb (neodymium - iron - boron) installed in special magnetizers on the fuel line to the high-pressure fuel pump.The methods of analysis of changes in external indicators of the 4CHN9.5/11 engine during magnetic treatment of fuel are considered. The pictures of the 4CHN9.5/11 engine tested are presented. The results of the parameters of the 4CHN9.5/11 diesel engine (effective power, speed, average effective pressure, hourly fuel consumption, specific effective fuel consumption) during tests on load and screw characteristics before or after installation of the magnetizer are presented. The bench tests have confirmed that the reduction in fuel consumption when testing a diesel engine running on magnetically treated fuel makes 5-8%. It is noted that with other types of marine fuel and on other models of engines it is possible to clarify the methods of using magnetic processing in sea and river transport


2020 ◽  
Vol 8 (10) ◽  
pp. 747
Author(s):  
Vladimir Pelić ◽  
Tomislav Mrakovčić ◽  
Vedran Medica-Viola ◽  
Marko Valčić

The energy efficiency and environmental friendliness of medium-speed marine diesel engines are to be improved through the application of various measures and technologies. Special attention will be paid to the reduction in NOx in order to comply with the conditions of the MARPOL Convention, Annex VI. The reduction in NOx emissions will be achieved by the application of primary and secondary measures. The primary measures relate to the process in the engine, while the secondary measures are based on the reduction in NOx emissions through the after-treatment of exhaust gases. Some primary measures such as exhaust gas recirculation, adding water to the fuel or injecting water into the cylinder give good results in reducing NOx emissions, but generally lead to an increase in fuel consumption. In contrast to the aforementioned methods, the use of an earlier inlet valve closure, referred to in the literature as the Miller process, not only reduces NOx emissions, but also increases the efficiency of the engine in conjunction with appropriate turbochargers. A previously developed numerical model to simulate diesel engine operation is used to analyse the effects of the Miller process on engine performance. Although the numerical model cannot completely replace experimental research, it is an effective tool for verifying the influence of various input parameters on engine performance. In this paper, the effect of an earlier closing of the intake valve and an increase in inlet manifold pressure on fuel consumption, pressure and temperature in the engine cylinder under steady-state conditions is analysed. The results obtained with the numerical model show the justification for using the Miller processes to reduce NOx emissions and fuel consumption.


Author(s):  
Dimitrios T. Hountalas ◽  
Nikolaos F. Sakellaridis ◽  
Efthimios Pariotis ◽  
Antonis K. Antonopoulos ◽  
Leonidas Zissimatos ◽  
...  

The diesel engine is widely used for marine vessel propulsion due to its relatively high efficiency compared to existing alternative propulsion systems. The majority of these engines are slow speed two stroke ones. Despite the improvement of their efficiency there now exists a demand for drastic reduction of daily fuel oil consumption as a result of the global financial situation and continuously increasing fuel prices. Towards this effort, slow steaming is a promising solution for the drastic reduction of daily and specific fuel consumption when expressed in tn/mile. This requires engine operation in the low load (low speed) range where these engines are not designed to operate for long term. The main problem related to slow-steaming, is the lack of air which has a negative impact on the engine and its subsystems. A promising solution to the problem is turbocharger (T/C) cut-out at low load when more than one T/C exists. In the present work a combined computational and experimental investigation is conducted to evaluate the operation potential of a large two stroke marine diesel engine equipped with two T/Cs using T/C cut-out, for which the specific technology presents various challenges. This is achieved using an in-house engine simulation model and measurements with and without T/C cut-out. From the results it is revealed that using this technique the scavenging air and peak firing pressure increase while the specific fuel consumption decreases. In this way, some major problems related with the long term operation of the engine under low load conditions, i.e. accumulation of carbon deposits on the exhaust gas side and continuous operation of the auxiliary air blowers, are surpassed. Moreover, a theoretical investigation is conducted considering fuel injection retard to minimize the peak firing pressure penalty while taking care to limit the corresponding negative impact on specific fuel consumption. For NOx emissions the effect of T/C cut-out is also considered using tail pipe emission data measured during the official shop tests. From the analysis conducted it has been revealed that the technique of turbocharger cut–out (one of two) is technically feasible and could offer certain advantages when slow-steaming is implemented. Moreover, comparing the calculated with the measured results, it has been revealed that the simulation model successfully estimates engine operation with and without T/C cut-out, being a valuable tool for the engineers to investigate combustion and pollutant formation mechanisms under various engine configurations.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Marcin Tkaczyk ◽  
Zbigniew J. Sroka ◽  
Konrad Krakowian ◽  
Radoslaw Wlostowski

Fuel catalytic additives have been tested for many years. Herein, their influence on the overall efficiency of combustion engines is investigated, and their pro-ecological impact is assessed. The majority of this research concerns diesel engines. Despite many advantages, to this day, the use of catalytic additives has not become widespread. Wishing to clarify the situation, a research group from the Wroclaw University of Science and Technology decided to investigate this matter, starting with verification tests. This article presents the methodology and results of testing an actual diesel engine, and evaluates the effects of the use of a fuel catalytic additive. The focus was on the analysis of fuel consumption and exhaust gas emissions from a Doosan MD196TI engine. The tested additive was a commercial fuel performance catalyst (FAMAX) with up to 5% ferric chloride as an organometallic compound. The proportion of the mixture with the fuel was 1:2000. These studies provide an energy and ecological assessment of propulsion in inland vehicles relative to current exhaust emission standards. The tests were carried out in accordance with the ISO 8178 standard, albeit on a much broader scale regarding engine operation than required by the standard. In this way, a set of previously published data was more than doubled in scope. Detailed conclusions indicate the positive effect of the tested fuel additive. The emission values decreased, on average by 16.7% for particulate matter (PM), 10.1% for carbon monoxide (CO), and 7.9% for total hydrocarbons (THC). Unfortunately, the amount of nitrogen oxides (NOx) increased by 1.2%. The average difference in specific fuel consumption (BSFC) between the fuel with additive and pure diesel fuel was 0.5%, i.e. below the level of measurement error. The authors formulated the following scientific relationship between the thermal efficiency of the engine and the operation of the catalyst: the effect of the catalyst on the combustion process decreases with the increase of the thermodynamic efficiency of the engine. This conclusion indicates that despite the proven positive effect of catalysts on the combustion process, they can only be used in markets where engines with low thermal efficiency are used, i.e., older generation engines.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Soni S. Wirawan dkk

Biodiesel is a viable substitute for petroleum-based diesel fuel. Its advantages are improved lubricity, higher cetane number and cleaner emission. Biodiesel and its blends with petroleum-based diesel fuel can be used in diesel engines without any signifi cant modifi cations to the engines. Data from the numerous research reports and test programs showed that as the percent of biodiesel in blends increases, emission of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) all decrease, but the amount of oxides of nitrogen (NOx) and fuel consumption is tend to increase. The most signifi cant hurdle for broader commercialization of biodiesel is its cost. In current fuel price policy in Indonesia (especially fuel for transportation), the higher percent of biodiesel in blend will increase the price of blends fuel. The objective of this study is to assess the optimum blends of biodiesel with petroleum-based diesel fuel from the technically and economically consideration. The study result recommends that 20% biodiesel blend with 80% petroleum-based diesel fuel (B20) is the optimum blend for unmodifi ed diesel engine uses.Keywords: biodiesel, emission, optimum, blend


Sign in / Sign up

Export Citation Format

Share Document