Fungi in Consolidated Bioprocessing of Lignocellulosic Materials

Author(s):  
Anastasia P. Galanopoulou ◽  
Dimitris G. Hatzinikolaou
Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Sakae Horisawa ◽  
Akie Inoue ◽  
Yuka Yamanaka

The cost of bioethanol production from lignocellulosic materials is relatively high because the additional processes of delignification and saccharification are required. Consolidated bioprocessing (CBP) simultaneously uses the multiple processes of delignification, saccharification, and fermentation in a single reactor and has the potential to solve the problem of cost. Some wood-degrading basidiomycetes have lignin- and cellulose-degrading abilities as well as ethanol fermentation ability. The white rot fungus Schizophyllum commune NBRC 4928 was selected as a strong fermenter from a previous study. The lignin-degrading fungus Bjerkandera adusta and polysaccharide-degrading fungus Fomitopsis palustris were respectively added to S. commune ethanol fermentations to help degrade lignocellulosic materials. Bjerkandera adusta produced more ligninase under aerobic conditions, so a switching aeration condition was adopted. The mixed culture of S. commune and B. adusta promoted direct ethanol production from cedar wood. Fomitopsis palustris produced enzymes that released glucose from both carboxymethylcellulose and microcrystalline cellulose. The mixed culture of S. commune and F. palustris did not enhance ethanol production from cedar. The combination of S. commune and cellulase significantly increased the rate of ethanol production. The results suggest that CBP for ethanol production from cellulosic material can be achieved by using multiple fungi in one reactor.


2021 ◽  
Vol 2 (2) ◽  
pp. 287-310
Author(s):  
Daniel Gomes ◽  
Joana Cunha ◽  
Elisa Zanuso ◽  
José Teixeira ◽  
Lucília Domingues

Lignocellulosic residues have been receiving growing interest as a promising source of polysaccharides, which can be converted into a variety of compounds, ranging from biofuels to bioplastics. Most of these can replace equivalent products traditionally originated from petroleum, hence representing an important environmental advantage. Lignocellulosic materials are theoretically unlimited, cheaper and may not compete with food crops. However, the conversion of these materials to simpler sugars usually requires cellulolytic enzymes. Being still associated with a high cost of production, cellulases are commonly considered as one of the main obstacles in the economic valorization of lignocellulosics. This work provides a brief overview of some of the most studied strategies that can allow an important reduction of cellulases consumption, hence improving the economy of lignocellulosics conversion. Cellulases recycling is initially discussed regarding the main processes to recover active enzymes and the most important factors that may affect enzyme recyclability. Similarly, the potential of enzyme immobilization is analyzed with a special focus on the contributions that some elements of the process can offer for prolonged times of operation and improved enzyme stability and robustness. Finally, the emergent concept of consolidated bioprocessing (CBP) is also described in the particular context of a potential reduction of cellulases consumption.


2017 ◽  
Vol 14 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Joanna Brzeska

Background: Cross-linking structure of polyurethanes determines no degradability of these materials. However, introducing the hydrolysable substrates (of natural or synthetic origin) into the cross-linked polyurethanes structure makes them biodegradable. Moreover compounds (such as polycaprolactone triol, glycerin, lysine triisocyanate, etc.) that are used for polyurethane cross-linking are degraded in non-toxic products. All these kinds of compounds can be introduced into soft or hard segments via urethane bonds. Objective: The review focuses on kind of multifunctional polyols and isocyanates, and low molecular crosslinkers used for cross-linked polyurethanes obtaining. These compounds are natural substrates (in the native state or after modification) or are synthetic compounds with degradable linkages. They belong to polyesters, plant oils, proteins, saccharides, and others (e.g. lignocellulosic materials), and they are synthesized chemically or via biosynthesis by algae, plants, microorganisms, and by animals. Conclusion: Incorporation of degradable groups (such as ester moieties) into the polymer structure, and using of substrates with the structure known and metabolized by microorganisms for soft or hard segments building, facilitate degradation of cross-linked polyurethanes.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingen Li ◽  
Shuying Gu ◽  
Zhen Zhao ◽  
Bingchen Chen ◽  
Qian Liu ◽  
...  

Abstract Background Lignocellulosic biomass has long been recognized as a potential sustainable source for industrial applications. The costs associated with conversion of plant biomass to fermentable sugar represent a significant barrier to the production of cost-competitive biochemicals. Consolidated bioprocessing (CBP) is considered a potential breakthrough for achieving cost-efficient production of biomass-based fuels and commodity chemicals. During the degradation of cellulose, cellobiose (major end-product of cellulase activity) is catabolized by hydrolytic and phosphorolytic pathways in cellulolytic organisms. However, the details of the two intracellular cellobiose metabolism pathways in cellulolytic fungi remain to be uncovered. Results Using the engineered malic acid production fungal strain JG207, we demonstrated that the hydrolytic pathway by β-glucosidase and the phosphorolytic pathway by phosphorylase are both used for intracellular cellobiose metabolism in Myceliophthora thermophila, and the yield of malic acid can benefit from the energy advantages of phosphorolytic cleavage. There were obvious differences in regulation of the two cellobiose catabolic pathways depending on whether M. thermophila JG207 was grown on cellobiose or Avicel. Disruption of Mtcpp in strain JG207 led to decreased production of malic acid under cellobiose conditions, while expression levels of all three intracellular β-glucosidase genes were significantly up-regulated to rescue the impairment of the phosphorolytic pathway under Avicel conditions. When the flux of the hydrolytic pathway was reduced, we found that β-glucosidase encoded by bgl1 was the dominant enzyme in the hydrolytic pathway and deletion of bgl1 resulted in significant enhancement of protein secretion but reduction of malate production. Combining comprehensive manipulation of both cellobiose utilization pathways and enhancement of cellobiose uptake by overexpression of a cellobiose transporter, the final strain JG412Δbgl2Δbgl3 produced up to 101.2 g/L and 77.4 g/L malic acid from cellobiose and Avicel, respectively, which corresponded to respective yields of 1.35 g/g and 1.03 g/g, representing significant improvement over the starting strain JG207. Conclusions This is the first report of detailed investigation of intracellular cellobiose catabolism in cellulolytic fungus M. thermophila. These results provide insights that can be applied to industrial fungi for production of biofuels and biochemicals from cellobiose and cellulose.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


2021 ◽  
Vol 109 ◽  
pp. 365-373
Author(s):  
Gabriela N. Pereira ◽  
Karina Cesca ◽  
Anelise Leal Vieira Cubas ◽  
Débora de Oliveira

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soad A. Abdelgalil ◽  
Nadia A. Soliman ◽  
Gaber A. Abo-Zaid ◽  
Yasser R. Abdel-Fattah

AbstractTo meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
H. A. Aisyah ◽  
M. T. Paridah ◽  
S. M. Sapuan ◽  
R. A. Ilyas ◽  
A. Khalina ◽  
...  

Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.


Sign in / Sign up

Export Citation Format

Share Document