Influence of anisotropic tissue electrical conductivity on electric field and temperature distribution during electroporation-based therapy

Author(s):  
I. Lacković ◽  
R. Magjarević ◽  
D. Miklavčič

1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.



Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.



2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.



1973 ◽  
Vol 51 (24) ◽  
pp. 2604-2611 ◽  
Author(s):  
H. E. Wilhelm

Based on the Lenard–Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Max wellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron–ion drift velocities.



Author(s):  
P-A Duvillard ◽  
F Magnin ◽  
A Revil ◽  
A Legay ◽  
L Ravanel ◽  
...  

Summary Knowledge of the thermal state of steep alpine rock faces is crucial to assess potential geohazards associated with the degradation of permafrost. Temperature measurements at the rock surface or in boreholes are however expensive, invasive, and provide spatially-limited information. Electrical conductivity and induced polarization tomography can detect permafrost. We test here a recently developed petrophysical model based on the use of an exponential freezing curve applied to both electrical conductivity and normalized chargeability to infer the distribution of temperature below the freezing temperature. We then apply this approach to obtain the temperature distribution from electrical conductivity and normalized chargeability field data obtained across a profile extending from the SE to NW faces of the lower Cosmiques ridge (Mont Blanc massif, Western European Alps, 3613 m a.s.l., France). The geophysical datasets were acquired both in 2016 and 2019. The results indicate that the only NW face of the rock ridge is frozen. To evaluate our results, we model the bedrock temperature across this rock ridge using CryoGRID2, a 1D MATLAB diffusive transient thermal model and surface temperature time series. The modelled temperature profile confirms the presence of permafrost in a way that is consistent with that obtained from the geophysical data. Our study offers a promising low-cost approach to monitor temperature distribution in Alpine rock walls and ridges in response to climate change.





2014 ◽  
Vol 25 (4) ◽  
pp. 627-634 ◽  
Author(s):  
I. Hattenhauer ◽  
P. P. Tambosi ◽  
C. A. Duarte ◽  
L. A. F. Coelho ◽  
A. Ramos ◽  
...  


2021 ◽  
Vol 54 (5) ◽  
pp. 1317-1326
Author(s):  
Arsen Petrenko ◽  
Nataliya Novikova ◽  
Alexander Blagov ◽  
Anton Kulikov ◽  
Yury Pisarevskii ◽  
...  

The anisotropy of deformations in potassium acid phthalate crystals arising under the action of an external electric field up to 1 kV mm−1 applied along the [001] polar axis was studied using X-ray diffraction methods at room temperature. Electrical conductivity was measured and rocking curves for reflections 400, 070 and 004 were obtained by time-resolved X-ray diffractometry in Laue and Bragg geometries. Two saturation processes were observed from the time dependences of the electrical conductivity. A shift in the diffraction peaks and a change in their intensity were found, which indicated a deformation of the crystal structure. Rapid piezoelectric deformation and reversible relaxation-like deformation, kinetically similar to the electrical conductivity of a crystal, were revealed. The deformation depended on the polarity and strength of the applied field. The deformation was more noticeable in the [100] direction and was practically absent in the [001] direction of the applied field. X-ray diffraction analysis revealed a disordered arrangement of potassium atoms, i.e. additional positions and vacancies. The heights of potential barriers between the positions of K+ ions and the paths of their possible migration in the crystal structure of potassium acid phthalate were determined. The data obtained by time-resolved X-ray diffractometry and X-ray structure analysis, along with additional electrophysical measurements, allow the conclusion that the migration of charge carriers (potassium cations) leads to lateral deformation of the crystal structure of potassium phthalate in an external electric field.



Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2022 ◽  
Author(s):  
Maryam Mesgarpour Tousi ◽  
Mona Ghassemi

Our previous studies showed that geometrical techniques including (1) metal layer offset, (2) stacked substrate design and (3) protruding substrate, either individually or combined, cannot solve high electric field issues in high voltage high-density wide bandgap (WBG) power modules. Then, for the first time, we showed that a combination of the aforementioned geometrical methods and the application of a nonlinear field-dependent conductivity (FDC) layer could address the issue. Simulations were done under a 50 Hz sinusoidal AC voltage per IEC 61287-1. However, in practice, the insulation materials of the envisaged WBG power modules will be under square wave voltage pulses with a frequency of up to a few tens of kHz and temperatures up to a few hundred degrees. The relative permittivity and electrical conductivity of aluminum nitride (AlN) ceramic, silicone gel, and nonlinear FDC materials that were assumed to be constant in our previous studies, may be frequency- and temperature-dependent, and their dependency should be considered in the model. This is the case for other papers dealing with electric field calculation within power electronics modules, where the permittivity and AC electrical conductivity of the encapsulant and ceramic substrate materials are assumed at room temperature and for a 50 or 60 Hz AC sinusoidal voltage. Thus, the big question that remains unanswered is whether or not electric field simulations are valid for high temperature and high-frequency conditions. In this paper, this technical gap is addressed where a frequency- and temperature-dependent finite element method (FEM) model of the insulation system envisaged for a 6.5 kV high-density WBG power module will be developed in COMSOL Multiphysics, where a protruding substrate combined with the application of a nonlinear FDC layer is considered to address the high field issue. By using this model, the influence of frequency and temperature on the effectiveness of the proposed electric field reduction method is studied.



Tellus ◽  
1975 ◽  
Vol 27 (5) ◽  
pp. 497-506 ◽  
Author(s):  
Z. Levin ◽  
W. D. Scott


Sign in / Sign up

Export Citation Format

Share Document