On the Sustainable Utilization of the World’s Cultivated Land Resources in View of Food Security

Author(s):  
Ya-li Luo ◽  
Chang-xin Zhang
Author(s):  
Wenbo Li ◽  
Dongyan Wang ◽  
Shuhan Liu ◽  
Yuanli Zhu ◽  
Zhuoran Yan

The competition for land resources created by the need for food security and ecological security is intensifying globally. To resolve the issue of land scarcity in agriculture following rapid urbanization, China implemented its requisition–compensation balance policy of cultivated lands in 1997, the introduction of which consumed numerous areas of land, such as river shoal and bare land, through reclamation. Moreover, these reclaimed and newly cultivated lands were mainly distributed in the northern part of China. Most previous studies of this subject have only examined the overall balance of cultivated lands in well-developed regions, and there is a lack of knowledge about the indigenous gains and losses before and after reclamation in important areas such as northeast China. Therefore, this study selected two representative county-level units in northeast China as the study area to analyze the conversion of cultivated land reserves during 1996–2015, evaluate the performance of reclaimed cultivated lands in terms of quality and productivity and calculate reclamation-induced changes in ecosystem service value. The results indicated that by 2015 only 16.02% of the original cultivated land reserves remained unconverted; nearly 60% were reclaimed as cultivated lands and over 20% were converted to other land resources. River shoal and ruderal land were the primary resources for cultivated lands compensation, and marsh, bare land and saline-alkaline land were found to be converted the most thoroughly. The gain of 23018.55 ha reclaimed cultivated lands were of relatively inferior quality and lower productivity, contributing approximately 4.32% of total grain output. However, this modest gain was at the expense of a 768.03 million yuan ecosystem services loss, with regulating services and supporting services being undermined the most. We argue that even if northeast China continues to shoulder the responsibility of compensating for a majority of cultivated land losses, it still needs to carefully process reclamation and introduce practical measures to protect indigenous ecosystems, in order to better serve the local residents and ensure prolonged food security with sustainability.


2019 ◽  
Vol 11 (8) ◽  
pp. 2338
Author(s):  
Haizi Wang ◽  
Chaowei Li ◽  
Juan Liu ◽  
Shibin Zhang

In China, the current household contract responsibility system has been unable to adapt to the commercialization and marketization of rural cultivated land. Rural land transfer is allowed by the government as a supplement to the household contract responsibility system. However, in 2016, the rural land circulating in China accounted for only 35% of the total national rural land area and there were many problems with the process of land circulation. Therefore, the rural revitalization strategy in China must focus on how to promote rural land circulation with high efficiency to ensure food security in China and high quality to realize the sustainable development of rural land resources. In this study, based on the theory of planned behaviour (TPB), two structural equation models (SEM) for rural land inflow and rural land outflow were used to compare and examine the key factors affecting farmers’ intention to engage in rural land circulation in Shandong Province. Data analysed from a survey of 549 farmers showed that behavioural attitudes, subjective norms, and perceptual behavioural control have a significant impact on farmers’ intention to engage in rural land circulation, and only subjective norms had a negative impact on the land inflow intention model. Behavioural attitudes had the greatest impact in the two models, but the impact paths of the two models were different. In the rural land inflow intention model, the intrinsic value of cultivated land is important to farmers, whereas in the rural land outflow model, the economic rationality of transferring land was mainly considered. The importance of perceptual behavioural control in the rural land outflow model was greater than it was in the rural land inflow model. The results of this research can provide a reference for formulating government policies, achieving the sustainable development of land resources, and guaranteeing food supply.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 249
Author(s):  
Quanfeng Li ◽  
Zhe Dong ◽  
Guoming Du ◽  
Aizheng Yang

The intensified use of cultivated land is essential for optimizing crop planting practices and protecting food security. This study employed a telecoupling framework to evaluate the cultivated land use intensification rates in typical Chinese villages (village cultivated land use intensifications—VCLUIs). The pressure–state–response (PSR) model organizes the VCLUI indexes including the intensity press, output state, and structural response of cultivated land use. Empirical analysis conducted in Baiquan County, China, indicating that the cultivated land use intensification levels of the whole county were low. However, the intensifications of villages influenced by physical and geographic locations and socioeconomic development levels varied significantly. This paper also found that variations in the VCLUIs were mainly dependent on new labor-driven social subsystem differences. Thus, the expanding per capita farmland scales and increasing numbers of new agricultural business entities were critical in improving the VCLUI. Overall, the theoretical framework proposed in this study was demonstrated to be effective in analyzing interactions among the natural, social, and economic subsystems of the VCLUI. The findings obtained in this study potentially have important implications for future regional food security, natural stability, and agricultural land use sustainability.


2018 ◽  
Vol 37 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Dadi Feyisa ◽  
Endalkachew Kissi ◽  
Zerihun Kebebew

AbstractDespite their restriction, smallholder farmers have been continuing growing Eucalyptus globulus in the cultivated land in the central highland of Ethiopia. Literature has shown controversial issues against E. globulus. Therefore, the objective of the study was to investigate the compatibility of E. globulus in the smallholder farmers’ land use system. Soil samples were collected from five different land uses and analysed for selected physical and chemical properties. The socioeconomic contribution of E. globulus was collected through household surveys from 110 households. Analysis of soil showed that organic carbon (OC), total nitrogen (TN) and cation exchange capacity (CEC) were significantly higher (P<0.05) under E. globulus compared to the cultivated land. The survey results also showed that the largest proportion (58%) of households was interested in growing E. globulus because of its multiple uses. About 83% of households responded that E. globulus help them to attain food security through increasing the purchasing power of smallholder farmers to buy agricultural inputs and food. This study has substantiated the role of E. globulus in the land use system of smallholder farmers. Most of the soil fertility indicators were better under E. globulus. The present finding reveals that E. globulus degrade the soil seemingly difficult to generalise. Growing E. globulus must be promoted under appealing land use to enhance smallholder farmers’ livelihoods. Removing E. globulus from the land use system may jeopardise the food security situation of many households.


Author(s):  
Fang Liu ◽  
◽  
Shuai Liu ◽  

Food security is the foundation of a country's social stability and economic development. This paper compares the global food security with China's food situation, summarizes the main problems of China's food security, and explores the factors that affect China's food security, including the shortage of agricultural land resources, the inability to meet the needs of food production, the rapid growth of food demand, the aggravation of the imbalance of food supply and the threat from the international market. Based on this, the paper puts forward suggestions of relevant policy to ensure national food security, in order to provide a scientific basis for the policy formulation of relevant government departments.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5613
Author(s):  
Xiao Li ◽  
Xiong Zhang ◽  
Hao Ren

Land desertification, a severe global ecological and environmental problem, brings challenges to the sustainable utilization of land resources in the world. The purpose of this research is to use hydrophobic theory to prepare impervious and breathable sand, and to solve the problems of sandy soil that seeps easily and makes it difficult for vegetation to survive in desertified areas. The influences of coating material content, first-level and second-level rough structure on the impermeability and air permeability of impervious and breathable sand were studied. The research showed that, with the increase in coating material content, the impervious performance of the sample increased firstly and then decreased, and the air permeability rose continuously. The hydrostatic pressure resistance of the sample can reach an extreme value of 53 mm. The first-level rough structure of micron structure can greatly improve the hydrophobic performance, thus improving the impervious performance. The addition of micron calcium carbonate would improve the hydrostatic pressure resistance height of the sample to 190 mm. The sample would reach a superhydrophobic state in the condition of a first-level rough structure of a nano structure built by nano silica, and the contact angle was up to 152.0°, so that the hydrostatic pressure resistance height can rise to 205 mm. The best performance would be achieved under the condition of relatively less raw material with a second-level rough structure of micro–nano. At this point, the contact angle of the sample reached 152.8° and the hydrostatic pressure resistance height was up to 205 mm. At the same time, the air permeability index of the above four kinds of impervious and breathable sand met all planting requirements. The sample prepared can satisfy the demands of different degrees of impermeability and air permeability, and can be widely used in desertification control.


2021 ◽  
Vol 1 (5) ◽  
pp. 64-70
Author(s):  
O. N. BUNCHIKOV ◽  
◽  
V. I. GAYDUK ◽  
S. V. GLADKY ◽  
M. G. PAREMUZOVA ◽  
...  

The article considers the aspects of increasing the competitiveness of an agricultural enterprise in modern conditions with the use of innovative management methods. Ensuring the country's food security is impossible without intensive cultivation of agricultural crops, based on the achievements of scientific and technological progress. The solution of this problem requires a large number of investments in the conditions of limited land resources and the instability of agro-industrial production.


Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 28 ◽  
Author(s):  
Uma Shankar Panday ◽  
Nawaraj Shrestha ◽  
Shashish Maharjan ◽  
Arun Kumar Pratihast ◽  
Shahnawaz ◽  
...  

Food security is one of the burning issues in the 21st century, as a tremendous population growth over recent decades has increased demand for food production systems. However, agricultural production is constrained by the limited availability of arable land resources, whereas a significant part of these is already degraded due to overexploitation. In order to get optimum output from the available land resources, it is of prime importance that crops are monitored, analyzed, and mapped at various stages of growth so that the areas having underdeveloped/unhealthy plants can be treated appropriately as and when required. This type of monitoring can be performed using ultra-high-resolution earth observation data like the images captured through unmanned aerial vehicles (UAVs)/drones. The objective of this research is to estimate and analyze the above-ground biomass (AGB) of the wheat crop using a consumer-grade red-green-blue (RGB) camera mounted on a drone. AGB and yield of wheat were estimated from linear regression models involving plant height obtained from crop surface models (CSMs) derived from the images captured by the drone-mounted camera. This study estimated plant height in an integrated setting of UAV-derived images with a Mid-Western Terai topographic setting (67 to 300 m amsl) of Nepal. Plant height estimated from the drone images had an error of 5% to 11.9% with respect to direct field measurement. While R2 of 0.66 was found for AGB, that of 0.73 and 0.70 were found for spike and grain weights respectively. This statistical quality assurance contributes to crop yield estimation, and hence to develop efficient food security strategies using earth observation and geo-information.


Sign in / Sign up

Export Citation Format

Share Document