The impact of growth conditions, culture media volume and glucose content on differentiation and metabolism of renal epithelial tissue cultures

Author(s):  
G. Gstraunthaler ◽  
T. Seppi ◽  
C. Monteil ◽  
E. Healy ◽  
M. P. Ryan ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Júlia Santos ◽  
Cecília Leão ◽  
Maria João Sousa

The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS). Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration ofNH4+added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1929
Author(s):  
Tereza Cervena ◽  
Andrea Rossnerova ◽  
Tana Zavodna ◽  
Jitka Sikorova ◽  
Kristyna Vrbova ◽  
...  

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.


2021 ◽  
Vol 11 (13) ◽  
pp. 6008
Author(s):  
Micael F. M. Gonçalves ◽  
Ana Paço ◽  
Luís F. Escada ◽  
Manuela S. F. Albuquerque ◽  
Carlos A. Pinto ◽  
...  

There is an urgent need for new substances to overcome current challenges in the health sciences. Marine fungi are known producers of numerous compounds, but the manipulation of growth conditions for optimal compound production can be laborious and time-consuming. In Portugal, despite its very long coastline, there are only a few studies on marine fungi. From a collection of Portuguese marine fungi, we screened for antimicrobial, antioxidant, enzymatic, and cytotoxic activities. Mycelia aqueous extracts, obtained by high pressure-assisted extraction, and methanolic extracts of culture media showed high antioxidant, antimicrobial, and cytotoxic activities. The mycelium extracts of Cladosporium rubrum showed higher antioxidant potential compared to extracts from other fungi. Mycelia and culture media extracts of Aspergillus affinis and Penicillium lusitanum inhibited the growth of Staphylococcus aureus, Kocuria rhizophila, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, including multiresistant strains. Penicillium lusitanum and Trichoderma aestuarinum inhibited the growth of clinical strains of Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis. All extracts from culture media were cytotoxic to Vero cells. Sea salt induced alterations in the mycelium’s chemical composition, leading to different activity profiles.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Sabaridasan Arumugam ◽  
Mohamed Shahila Abul Asan Sathali ◽  
Soranam Ramaiah ◽  
Gandhimaniyan Krishnan

2021 ◽  
Author(s):  
Ayman Chmayssem ◽  
Lauriane Petit ◽  
Nicolas Verplanck ◽  
Véronique Mourier ◽  
Séverine Vignoud ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Aparicio Ruiz ◽  
L Bori ◽  
E Paya ◽  
M A Valera ◽  
A Quiñonero ◽  
...  

Abstract Study question Would it be possible to predict embryo ploidy by taking into account conventional morphological and morphokinetic parameters together with IL-6 concentration in spent culture medium? Summary answer Our artificial neural network (ANN) trained with blastocyst morphology, embryo morphokinetics and IL-6 concentration distinguished between euploid/aneuploid embryos in 65% of the testing dataset. What is known already The analysis of spent embryo culture media represents the protein and metabolic state of the embryo and could be a non-invasive method of obtaining information about embryo quality. The impact of the presence/absence of several proteins in embryo culture samples over clinical results has been widely studied. The IL-6 is one of the most mentioned protein for its effect on embryo development, implantation and likelihood of achieving a live birth. In this initial attempt, we examined the predictive value for euploidy of a model that took into account the concentration of IL-6 in the spent culture medium. Study design, size, duration This prospective study included 319 embryos with PGT-A results. Out of the total, 127 were euploid and 192 aneuploid embryos. Concentration of IL-6 in spent embryo culture media (collected on the day of trophectoderm biopsy-fifth/sixth day of development), morphokinetic parameters (division time to 2 cells-t2; to 3 cells-t3, to 4 cells-t4; to 5 cells-t5 and time of blastocyst formation-tB) and blastocyst morphological grade (according to ASEBIR criteria) were considered to predict the embryo ploidy. Participants/materials, setting, methods Embryos were cultured in EmbryoScope. The chromosome analysis was performed using next-generation sequence technology. The concentration of IL-6 was measured in 20µL of spent embryo culture media with ELISA kits. Morphokinetic parameters were automatically annotated and the blastocyst morphology was evaluated by senior embryologists based on blastocele expansion, inner cell mass and trophectoderm quality. All the embryos were divided into 70% for training, 15% for validating and 15% for testing our ANN model with MatLab®. Main results and the role of chance The general description for the euploid embryo population was the following: 2% of the embryos were graded as A, 71% were graded as B and 28% were graded as C; the means and standard deviations were 25.32±2.97 hours (h) for t2, 35.33±5.15h for t3, 37.30±5.43h for t4, 48.24±6.62h for t5 and 103.93±12.8h for tB; and the average of IL-6 concentration was 1.51±0.70 pg/ml. The general description for the aneuploid embryo population was the following: 1% of the embryos were graded as A, 48% were graded as B and 51% were graded as C; the means and standard deviations were 26.13±3.51h for t2, 36.70±4.29h for t3, 38.20±4.24h for t4, 49.86±6.89h for t5 and 107.10±8.29h for tB; and the average of IL-6 concentration was 1.47±0.71 pg/ml. Our ANN model showed a higher general success rate as we increased the variables considered in the final prediction of euploid embryos. The accuracy, sensitivity and specificity for the testing dataset were: 0.60, 0.12 and 0.87 with morphokinetic parameters; 0.63, 0.24 and 0.93 with morphokinetics and IL-6 concentration; and 0.65, 0.16 and 0.96 with morphokinetics, IL-6 concentration and blastocyst morphological grade. Limitations, reasons for caution The low sensitivity and high specificity achieved in our models indicated that they were more capable of detecting aneuploid than euploid embryos. As this was a preliminary study, the small number of embryos included in the test (n = 48) was also a limitation. Wider implications of the findings The results showed that our model tended to classify the embryos as aneuploid. More euploid embryos would be necessary to train our model and achieve better results in the prediction of chromosomally normal embryos. Further studies with large number of embryos and additional variables could improve the non-invasive ploidy prediction. Trial registration number not applicable


Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3169-3180 ◽  
Author(s):  
Manjunath Ramanjaneya ◽  
Jing Chen ◽  
James E. Brown ◽  
Gyanendra Tripathi ◽  
Manfred Hallschmid ◽  
...  

Nesfatin-1 is a recently identified anorexigenic peptide derived from its precursor protein, nonesterified fatty acid/nucleobindin 2 (NUCB2). Although the hypothalamus is pivotal for the maintenance of energy homeostasis, adipose tissue plays an important role in the integration of metabolic activity and energy balance by communicating with peripheral organs and the brain via adipokines. Currently no data exist on nesfatin-1 expression, regulation, and secretion in adipose tissue. We therefore investigated NUCB2/nesfatin-1 gene and protein expression in human and murine adipose tissue depots. Additionally, the effects of insulin, dexamethasone, and inflammatory cytokines and the impact of food deprivation and obesity on nesfatin-1 expression were studied by quantitative RT-PCR and Western blotting. We present data showing NUCB2 mRNA (P &lt; 0.001), nesfatin-1 intracellular protein (P &lt; 0.001), and secretion (P &lt; 0.01) were significantly higher in sc adipose tissue compared with other depots. Also, nesfatin-1 protein expression was significantly increased in high-fat-fed mice (P &lt; 0.01) and reduced under food deprivation (P &lt; 0.01) compared with controls. Stimulation of sc adipose tissue explants with inflammatory cytokines (TNFα and IL-6), insulin, and dexamethasone resulted in a marked increase in intracellular nesfatin-1 levels. Furthermore, we present evidence that the secretion of nesfatin-1 into the culture media was dramatically increased during the differentiation of 3T3-L1 preadipocytes into adipocytes (P &lt; 0.001) and after treatments with TNF-α, IL-6, insulin, and dexamethasone (P &lt; 0.01). In addition, circulating nesfatin-1 levels were higher in high-fat-fed mice (P &lt; 0.05) and showed positive correlation with body mass index in human. We report that nesfatin-1 is a novel depot specific adipokine preferentially produced by sc tissue, with obesity- and food deprivation-regulated expression.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Sandra Guallar-Garrido ◽  
Farners Almiñana-Rapún ◽  
Víctor Campo-Pérez ◽  
Eduard Torrents ◽  
Marina Luquin ◽  
...  

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0252322
Author(s):  
Taiana Cunha Ribeiro ◽  
Emerson Kiyoshi Honda ◽  
Daniel Daniachi ◽  
Ricardo de Paula Leite Cury ◽  
Cely Barreto da Silva ◽  
...  

Background In the absence of a gold standard criterion for diagnosing prosthetic joint infections (PJI), sonication of the removed implant may provide superior microbiological identification to synovial fluid and peri-implant tissue cultures. The aim of this retrospective study was to assess the role of sonication culture compared to tissue cultures for diagnosing PJI, using different consensus and international guidelines for PJI definition. Methods Data of 146 patients undergoing removal of hip or knee arthroplasties between 2010 and 2018 were retrospectively reviewed. The International Consensus Meeting (ICM-2018), Musculoskeletal Infection Society (MSIS), Infectious Diseases Society of America (IDSA), the European Bone and Joint Infection Society (EBJIS), and a modified clinical criterion, were used to compare the performance of microbiological tests. McNemar´s test and proportion comparison were employed to calculate p-value. Results Overall, 56% (82/146) were diagnosed with PJI using the clinical criteria. Out of these cases, 57% (47/82) tested positive on tissue culture and 93% (76/82) on sonication culture. Applying this clinical criterion, the sensitivity of sonication fluid and tissue cultures was 92.7% (95% CI: 87.1%- 98.3%) and 57.3% (95% CI: 46.6%-68.0%) (p<0.001), respectively. When both methods were combined for diagnosis (sonication and tissue cultures) sensitivity reached 96.3% (95% CI: 91.5%-100%). Sonication culture and the combination of sonication with tissue cultures, showed higher sensitivity rates than tissue cultures alone for all diagnostic criteria (ICM-18, MSIS, IDSA and EBJIS) applied. Conversely, tissue culture provided greater specificity than sonication culture for all the criteria assessed, except for the EBJIS criteria, in which sonication and tissue cultures specificity was 100% and 95.3% (95% CI: 87.8–100%), respectively (p = 0.024). Conclusions In a context where diagnostic criteria available have shortcomings and tissue cultures remain the gold standard, sonication cultures can aid PJI diagnosis, especially when diagnostic criteria are inconclusive due to some important missing data (joint puncture, histology).


2020 ◽  
Vol 47 (3) ◽  
pp. 298-308
Author(s):  
K. R. Idowu ◽  
A. S. Chaudhry ◽  
J. Dolfing ◽  
V. O. A. Ojo

Fungal improvement of the nutritive content of low-quality forages can be affected by several factors among which loss of water-soluble content (WSC) plays a major role. To achieve this aim, two growth conditions i.e. forage-liquid ratios (1:3 and 1:5) and two inoculation times (14 and 28 days) were used to cultivate the selected fungi i.e. Pleurotus ostreatus (PO) at 30°C and Ceriporiopsis rivulosus (CR) at 20°C on Brachiaria decumbens (BD), Andropogon gayanus (AG), Triticum aestivum (TA) straw, Lolium perenne (LP), respectively with the view of selecting the optimal conditions that facilitate the release of WSC. The impact that losses of WSC have on the ability of fungi to improve the nutritive content (i.e. proximate, fibre, secondary metabolites and total antioxidant content) of the forages were then measured using 2 filtering methods i.e. light pump filtering method (LFM) and free flow filtering method (FFM). The optimal conditions that supported increased th soluble was identified as 28th day for both fungi; forage-liquid ratio of 1:5 for both fungi in most of the forages except BD (CR) and BD & AG (PO). The LFM led to lesser or no improvement in the nutritive quality of the upgraded forages while the opposite was recorded with the LFM. The LFM as against the FFM produced upgraded forages with lesser reduction in NDF; similar or higher ADF and lignin contents; and similar reduction in secondary metabolites and TAC when compared with un-improved forages. It can be concluded that the fungal improvement of the nutritive content of low-quality forages was negatively affected by the loss of WSC. It is therefore recommended that fungal improvement of the nutritive quality of low quality forages should be carried out with methods or techniques that facilitates little or no WSC loss in the upgraded forages.


Sign in / Sign up

Export Citation Format

Share Document