Evaluation of the Immuno-Protective Effects of the New-Type of Bags Using ELISA- and FACS-Analysis

Author(s):  
M. S. Rahman ◽  
Yasmin Banu ◽  
Atsuko Matsuoka ◽  
Akira Ichikawa ◽  
Masamune Sakai ◽  
...  
2013 ◽  
Vol 278-280 ◽  
pp. 426-428 ◽  
Author(s):  
Yu Jie Jin ◽  
Li Guang Xiao ◽  
Feng Luo

Owing to the disadvantages of traditional mortar with poor antifreeze property,low adhesive strength and short durability in the cold region of China, the facing tiles often fall off and lead to the lost of decorative effects and protective effects. In this article,a new type of mortar for exterior wall facing tile,polymer cement mortar modified by polymer, is introduced. The advantages of the new mortar are: (l) Better frost resistance,which is reflected by stability after one hundred cycles of freezing and thawing; (2) Higher adhesive strength (2.0MPa); (3) Better permeability resistance and longer durability. It is believed that an ideal building mortar for the resistance of frost damage and suitable for exterior wall facing tile.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1909-1909
Author(s):  
Adham S Bear ◽  
Meghan M Turnis ◽  
Xiao-Tong Song ◽  
Russell Cruz ◽  
An Lu ◽  
...  

Abstract Abstract 1909 Introduction: Cancer vaccines have shown promise in small animal models of cancer, but have thus far been disappointing in clinical settings. Successful induction of a systemic and long-term anti-tumor immune response following vaccination is dependent on delivery of tumor-associated antigens to lymphoid tissues, in combination with the activation of professional antigen presenting cells (APCs). Here we describe a novel live T cell vaccine (TCV) that delivers antigenic peptides to secondary lymph nodes while simultaneously activating endogenous dendritic cells (DCs) through transgenic expression of CD40L or bacterial flagellin (fliC). Methods: To generate TCVs, murine splenocytes were isolated from wild-type type C57BL/6 mice. Following activation with anti-CD3/anti-CD28 microbeads, splenocytes were transduced with pRV2011-luciferase-IRES-Thy1.1, pRV2011-CD40L-IRES-Thy1.1 or pRV2011-fliC-IRES-Thy1.1 retrovirus. Analysis of TCV migration to lymphoid organs was performed by bioluminescence imaging for firefly luciferase. Following transduction with CD40L and fliC molecules, TCVs were measured for transduction efficiency (Thy1.1) and transgene expression using FACS analysis of CD40L or by Western blot, respectively. TCVs were subsequently pulsed with MHC class I-restricted epitopes for ovalbumin257-264 (SIINFEKL) or Trp2180-188 (SVYDFFVWL) peptides and injected intravenously at a dose of 1×107 TCVs per vaccination. To test the protective effects of TCVs, C57BL/6 mice were immunized at days 0 and 14 and then challenged with either 5×105 B16-OVA (for TCV-SIIN) or parental B16.F10 (for TCV-SVYD) melanoma tumor cells. To examine the ability of TCVs to eliminate established tumors, mice received B16-OVA or B16.F10 tumor cells followed by vaccination with TCVs on days 3, 9 and 15. Immunological studies were performed on a subset of mice (n=5 per group) to analyze induction of tumor-specific T cells using tetramer and IFN-g ELIspot assays. In vivo activation of lymph node DCs was performed by FACS analysis for CD11c+ DC co-expressing CD86 and I-A/I-E mouse MHC class II antibodies. Results: Following activation, TCVs were efficiently transduced with retrovirus (>85% CD40L) or expressed high levels of fliC. Bioluminescent imaging showed that luciferase-expressing TCVs rapidly migrated to lymphoid organs including the spleen and cervical and inguinal lymph nodes demonstrating the capacity of TCVs to co-localize with professional APCs. Importantly, irradiation (30 Gy) of TCVs completely abrogated migration and persistence highlighting the requirement for live TCVs. Next we examined whether TCV-CD40L or TCV-fliC could induce a protective immune response against B16 tumors. Administration of TCV-fliC-SIIN (OVA) and TCV-CD40L-SIIN primed peptide-specific CD8+ T cells, and led to decreased tumor growth and increased survival in mice subsequently challenged with B16-Ova (p<0.05). This response corresponded with a statistically significant (p<.05) increase in SIIN-specific CD8+ T cells as measured by tetramer FACS analysis and IFN-g ELIspot assays. Vaccination of mice with established tumors showed similar tumor suppression with both TCV designs (p<05). As OVA is a xenogenic antigen, we next examined whether TCVs pulsed with Trp2 peptide (SVYD) could induce similar protective effects. While vaccination with SVYD-pulsed T cells alone (no gene modification) did not inhibit tumor growth, expression of CD40L or fliC by TCV pulsed with Trp2 peptide suppressed B16.F10 tumor proliferation and increased survival in mice with pre-established tumors (p<.05). As found in the B16.OVA experiments, immunological protection correlated with a dramatic increase in SVYD-specific CD8+ T cells in the spleen, tumor draining lymph nodes and tumor. Conclusions: The efficient delivery of tumor-associated antigens to lymphoid tissues by TCVs overcomes a major limitation of alternative vaccine strategies. Vaccination with peptide-pulsed TCVs primes antigen-specific T cell responses with anti-tumor capability, and endogenous DC maturation leads to the inhibition of established B16-Ova and B16-F10 tumors. This illustrates the role of endogenous DC as mediators of the vaccine response and demonstrates the effectiveness of using TCVs to deliver antigen in the context of DC activating molecules. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Lucien F. Trueb

A new type of synthetic industrial diamond formed by an explosive shock process has been recently developed by the Du Pont Company. This material consists of a mixture of two basically different forms, as shown in Figure 1: relatively flat and compact aggregates of acicular crystallites, and single crystals in the form of irregular polyhedra with straight edges.Figure 2 is a high magnification micrograph typical for the fibrous aggregates; it shows that they are composed of bundles of crystallites 0.05-0.3 μ long and 0.02 μ. wide. The selected area diffraction diagram (insert in Figure 2) consists of a weak polycrystalline ring pattern and a strong texture pattern with arc reflections. The latter results from crystals having preferred orientation, which shows that in a given particle most fibrils have a similar orientation.


Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


Author(s):  
Y. Taniguchi ◽  
E. Nakazawa ◽  
S. Taya

Imaging energy filters can add new information to electron microscopic images with respect to energy-axis, so-called electron spectroscopic imaging (ESI). Recently, many good results have been reported using this imaging technique. ESI also allows high-contrast observation of unstained biological samples, becoming a trend of the field of morphology. We manufactured a new type of energy filter as a trial production. This energy filter consists of two magnets, and we call γ-filter since the trajectory of electrons shows ‘γ’-shape inside the filter. We evaluated the new energyγ-filter TEM with the γ-filter.Figure 1 shows schematic view of the electron optics of the γ-type energy filter. For the determination of the electron-optics of the γ-type energy filter, we used the TRIO (Third Order Ion Optics) program which has been developed for the design of high resolution mass spectrometers. The TRIO takes the extended fringing fields (EFF) into consideration. EFF makes it difficult to design magnetic energy filters with magnetic sector fields.


Author(s):  
N. Mori ◽  
T. Oikawa ◽  
Y. Harada ◽  
J. Miyahara ◽  
T. Matsuo

The Imaging Plate (IP) is a new type imaging device, which was developed for diagnostic x ray imaging. We have reported that usage of the IP for a TEM has many merits; those are high sensitivity, wide dynamic range, and good linearity. However in the previous report the reading system was prototype drum-type-scanner, and IP was also experimentally made, which phosphor layer was 50μm thick with no protective layer. So special care was needed to handle them, and they were used only to make sure the basic characteristics. In this article we report the result of newly developed reading, printing system and high resolution IP for practical use. We mainly discuss the characteristics of the IP here. (Precise performance concerned with the reader and other system are reported in the other article.)Fig.1 shows the schematic cross section of the IP. The IP consists of three parts; protective layer, phosphor layer and support.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


Author(s):  
Etienne de Harven ◽  
Davide Soligo ◽  
Roy McGroarty ◽  
Hilary Christensen ◽  
Richard Leung ◽  
...  

Taking advantage of the high elemental contrast of particles of colloidal gold observed in the backscattered electron imaging(BEI) mode of the SEM (1,2), the human T lymphocyte was chosen as a model system to study the potential value of immunogold labeling for the quantification of cell surface expressed molecules. The CD3 antigen which is expressed on all human T lymphocytes and is readily identified by the LEU-4 murine monoclonal antibody (Becton Dickinson, Mountain View, CA) followed by a gold conjugated goat anti-mouse Ig polyclonal antibody was chosen as a model target antigen. When quantified by non-EM methods, using radio-iodinated probes or FACS analysis, approximately 30,000 to 50,000 copies of this antigen per cell are enumerated.The following observations were made while attempting to quantify the same molecule by SEM after specific immunogold labeling:Imaging in the SE vs BE mode: The numbers of gold markers counted in the secondary electron (SE) imaging mode are considerably lower than those counted on the same cells in the backscattered electron (BE) imaging mode.


Sign in / Sign up

Export Citation Format

Share Document