scholarly journals Notes on AdS-Schwarzschild eikonal phase

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Andrei Parnachev ◽  
Kallol Sen

Abstract We consider the eikonal phase associated with the gravitational scattering of a highly energetic light particle off a very heavy object in AdS spacetime. A simple expression for this phase follows from the WKB approximation to the scattering amplitude and has been computed to all orders in the ratio of the impact parameter to the Schwarzschild radius of the heavy particle. The eikonal phase is related to the deflection angle by the usual stationary phase relation. We consider the flat space limit and observe that for sufficiently small impact parameters (or angular momenta) the eikonal phase develops a large imaginary part; the inelastic cross-section is exactly the classical absorption cross-section of the black hole. We also consider a double scaling limit where the momentum becomes null simultaneously with the asymptotically AdS black hole becoming very large. In the dual CFT this limit retains contributions from all leading twist multi stress tensor operators, which are universal with respect to the addition of higher derivative terms to the gravitational lagrangian. We compute the eikonal phase and the associated Lyapunov exponent in the double scaling limit.

2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Fiona Kurpicz ◽  
Nicola Pinamonti ◽  
Rainer Verch

AbstractWe consider spherically symmetric spacetimes with an outer trapping horizon. Such spacetimes are generalizations of spherically symmetric black hole spacetimes where the central mass can vary with time, like in black hole collapse or black hole evaporation. While these spacetimes possess in general no timelike Killing vector field, they admit a Kodama vector field which in some ways provides a replacement. The Kodama vector field allows the definition of a surface gravity of the outer trapping horizon. Spherically symmetric spacelike cross sections of the outer trapping horizon define in- and outgoing lightlike congruences. We investigate a scaling limit of Hadamard 2-point functions of a quantum field on the spacetime onto the ingoing lightlike congruence. The scaling limit 2-point function has a universal form and a thermal spectrum with respect to the time parameter of the Kodama flow, where the inverse temperature $$\beta = 2\pi /\kappa $$ β = 2 π / κ is related to the surface gravity $$\kappa $$ κ of the horizon cross section in the same way as in the Hawking effect for an asymptotically static black hole. Similarly, the tunnelling probability that can be obtained in the scaling limit between in- and outgoing Fourier modes with respect to the time parameter of the Kodama flow shows a thermal distribution with the same inverse temperature, determined by the surface gravity. This can be seen as a local counterpart of the Hawking effect for a dynamical horizon in the scaling limit. Moreover, the scaling limit 2-point function allows it to define a scaling limit theory, a quantum field theory on the ingoing lightlike congruence emanating from a horizon cross section. The scaling limit 2-point function as well as the 2-point functions of coherent states of the scaling limit theory is correlation-free with respect to separation along the horizon cross section; therefore, their relative entropies behave proportional to the cross-sectional area. We thus obtain a proportionality of the relative entropy of coherent states of the scaling limit theory and the area of the horizon cross section with respect to which the scaling limit is defined. Thereby, we establish a local counterpart, and microscopic interpretation in the setting of quantum field theory on curved spacetimes, of the dynamical laws of outer trapping horizons, derived by Hayward and others in generalizing the laws of black hole dynamics originally shown for stationary black holes by Bardeen, Carter and Hawking.


1971 ◽  
Vol 49 (14) ◽  
pp. 1885-1898 ◽  
Author(s):  
M. Razavy

From the Lippmann–Schwinger equation, the exact and different approximate relations for the impact parameter form of the total scattering amplitude on- and off-the-energy shell are derived. The relation between the impact parameter phase shift and the range of potential is studied, and several methods of determining the potential from the impact parameter phase shift for local, nonlocal, and energy dependent interactions are obtained in Blankenbecler and Goldberger's approximation. By considering solvable examples it is shown that the Glauber's approximation, in certain cases, may be valid for all scattering angles. Finally for completely elastic scattering or for a purely absorptive potential, methods of finding the impact parameter phase shift from the differential cross section for scattering are given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Shouvik Datta ◽  
Yunfeng Jiang

Abstract We analyse the $$ T\overline{T} $$ T T ¯ deformation of 2d CFTs in a special double-scaling limit, of large central charge and small deformation parameter. In particular, we derive closed formulae for the deformation of the product of left and right moving CFT characters on the torus. It is shown that the 1/c contribution takes the same form as that of a CFT, but with rescalings of the modular parameter reflecting a state-dependent change of coordinates. We also extend the analysis for more general deformations that involve $$ T\overline{T} $$ T T ¯ , $$ J\overline{T} $$ J T ¯ and $$ T\overline{J} $$ T J ¯ simultaneously. We comment on the implications of our results for holographic proposals of irrelevant deformations.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Subhroneel Chakrabarti ◽  
Suresh Govindarajan ◽  
P. Shanmugapriya ◽  
Yogesh K. Srivastava ◽  
Amitabh Virmani

Abstract Although BMPV black holes in flat space and in Taub-NUT space have identical near-horizon geometries, they have different indices from the microscopic analysis. For K3 compactification of type IIB theory, Sen et al. in a series of papers identified that the key to resolving this puzzle is the black hole hair modes: smooth, normalisable, bosonic and fermionic degrees of freedom living outside the horizon. In this paper, we extend their study to N = 4 CHL orbifold models. For these models, the puzzle is more challenging due to the presence of the twisted sectors. We identify hair modes in the untwisted as well as twisted sectors. We show that after removing the contributions of the hair modes from the microscopic partition functions, the 4d and 5d horizon partition functions agree. Special care is taken to present details on the smoothness analysis of hair modes for rotating black holes, thereby filling an essential gap in the literature.


Sign in / Sign up

Export Citation Format

Share Document