Cutting energy consumption modelling for prismatic machining features

2019 ◽  
Vol 103 (5-8) ◽  
pp. 1657-1667 ◽  
Author(s):  
Lihui Wang ◽  
Yue Meng ◽  
Wei Ji ◽  
Xianli Liu
2011 ◽  
Vol 228-229 ◽  
pp. 1035-1038
Author(s):  
Zhi Yong Hao ◽  
Jun Mao

Using finite element analysis software ANSYS/ LS-DYNA, establishing the plow cutting coal seam 3D simulation model, simulating plow bit cutting coal seam dynamic process. under study, obtaining plow bit the cutting resistance, plow speed of time process curve, analyzing the influence on cutting energy consumption of the different cutting depth, separation distance and width, reaching the rule of cutting energy consumption changing with plow bits’ structure parameter and design parameters, in order to reduce the energy consumption and resistance, cutting depth and plow bits spacing ought to be selected by the real coal seam face conditions.


2016 ◽  
Vol 842 ◽  
pp. 14-18
Author(s):  
Sri Raharno ◽  
Yatna Yuwana Martawirya ◽  
Heng Rath Visith ◽  
Jeffry Aditya Cipta Wijaya

Manufacturing industries have consumed 30% of the total world energy. The main energy source used in those manufacturing industries is the electricity generated from fossil fuels such as oil, gas, and coal as a result in causing the environmental and economic issues. This paper presents an experimental study in order to get the minimum energy consumption during turning of aluminum 6010 with the conventional machine tool under dry cutting condition by optimizing the cutting parameters to contribute to those issues. An analysis of variance (ANOVA) was employed to analyze the effects and contribution of depth of cut, feed, and cutting speed on the response variable, specific cutting energy. The result of this experiment showed that the feed was the most significant factor for minimizing energy consumption followed by the cutting speed and the depth of cut. The minimum energy consumption was obtained when the highest level of cutting parameters have been used.


2017 ◽  
Vol 45 (113) ◽  
Author(s):  
Débora Fernanda Reis Nascimento ◽  
Luiz Eduardo de Lima Melo ◽  
José Reinaldo Moreira da Silva ◽  
Paulo Fernando Trugilho ◽  
Alfredo Napoli

Energy ◽  
2017 ◽  
Vol 139 ◽  
pp. 935-946 ◽  
Author(s):  
Luoke Hu ◽  
Ying Liu ◽  
Niels Lohse ◽  
Renzhong Tang ◽  
Jingxiang Lv ◽  
...  

Author(s):  
Muhammad Rizwan Awan ◽  
Hernán A. González Rojas ◽  
José I. Perat Benavides ◽  
Saqib Hameed

AbstractSpecific energy consumption is an important indicator for a better understanding of the machinability of materials. The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra-thin discs at comparatively low and medium feed rates. Using an experimental technique, the cutting power was measured at four predefined feed rates for S235JR, intermetallic Fe-Al(40%), and C45K with different thermal treatments. The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model, which enabled us to distinguish three phenomena of energy dissipation during material removal. The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern, its corresponding components, and cutting power. Ductile materials consume more specific cutting energy than brittle materials. The specific cutting energy is the minimum energy required to remove the material, and plowing energy is found to be the most significant phenomenon of energy dissipation.


2021 ◽  
Vol 64 (1) ◽  
pp. 221-230
Author(s):  
Fenglei Wang ◽  
Shaochun Ma ◽  
Haonan Xing ◽  
Jing Bai ◽  
Jinzhi Ma ◽  
...  

HighlightsThis study focused on the base cutting energy consumption for sugarcane stools instead of single stalks, thus being more consistent with actual field harvesting.The energy consumption increased with increasing rotational speed (RS) and stool diameter (SD), while it decreased with increasing tilt angle (TA) and feed rate (FR).Each pair of levels of each factor was compared using Duncan’s multiple range test. Three factors (RS, SD, and FR) had significant effects on energy consumption at 95% confidence level, while one factor (TA) had no significant effect.The order of influence and the optimal combination of the four factors to minimize the energy consumed during base cutting were determined.Abstract. Previous studies on contra-rotating basecutter designs based on supported cutting have mainly focused on the base cutting energy consumption for single sugarcane stalks instead of sugarcane stools. However, in the actual base cutting process, a basecutter typically cuts multiple sugarcane stalks (in one sugarcane stool) simultaneously. Therefore, this study investigated how the rotational speed (RS) and tilt angle (TA) of the cutting discs, the sugarcane stool diameter (SD), and the feed rate (FR) affected the energy consumed when cutting cane stools using a contra-rotating cutting platform. Four single-factor experiments and an orthogonal experiment were performed using a Taguchi orthogonal experimental design, and each group was replicated five times. The results of the single-factor experiments showed that the energy consumption was proportional to RS and SD, while it was negatively correlated with TA and FR. The significance of the difference between each pair of levels of each factor was investigated using Duncan’s multiple range test. According to the results of the orthogonal experiment, RS, SD, and FR had significant influences on the base cutting energy consumption at the 95% confidence level; however, TA had no significant influence. The order of influence of the four factors was SD > FR > RS > TA (18.45 > 18.39 > 12.91 > 9.06), and the optimal factor-level combination for minimizing the cutting energy was RS2, TA4, SD1, and FR3 (200 rpm disc RS, 20° disc TA, 60 mm SD, and 1.0 m s-1 FR). An understanding of the relationships between energy consumption and its influencing factors can serve as a valuable reference for researchers seeking to optimize the design of contra-rotating basecutters, which could lead to increased energy efficiency and a reduction in energy consumption during sugarcane harvesting. Keywords: Contra-rotating basecutter, Energy consumption, Orthogonal experiment, Single-factor experiment, Sugarcane stools, Supported cutting.


CERNE ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Erica Moraes de Souza ◽  
José Reinaldo Moreira da Silva ◽  
José Tarcísio Lima ◽  
Alfredo Napoli ◽  
Túlio Jardim Raad ◽  
...  

Modern technologies for continuous carbonization of Eucalyptus sp. require special care in wood cutting procedures. Choosing the right tool, cutting speeds and feed rates is important to manage time and energy consumption, both of which being critical factors in optimizing production. The objective of this work is to examine the influence of machining parameters on the specific cutting energy consumption of Eucalyptus sp. stands MN 463 and VM 01, owned by V&M Florestal. Tests were performed at the Wood Machining Laboratory of the Federal University of Lavras (DCF/UFLA). Moist logs 1.70m in length were used. The experiment was set up using a 3 x 3 x 4 x 2 factorial design (cutting speed x feed rate x number of teeth x tree stand). Results were subjected to analysis of variance and means were compared by the Tukey test at the 5% significance level. Greater cutting speeds, lower feed rates and the 40 teeth circular saw consumed more specific energy. Stand MN 463 consumed more specific energy. The combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 24 teeth circular saw produced better specific energy consumption results for stand MN 463. As for stand VM 01, the combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 20 teeth circular saw resulted in lower specific energy consumption.


Sign in / Sign up

Export Citation Format

Share Document