scholarly journals The manufacturability and compression properties of the Schwarz Diamond type Ti6Al4V cellular lattice fabricated by selective laser melting

2019 ◽  
Vol 105 (7-8) ◽  
pp. 3411-3425 ◽  
Author(s):  
Joanna Maszybrocka ◽  
Bartosz Gapiński ◽  
Michał Dworak ◽  
Grzegorz Skrabalak ◽  
Andrzej Stwora

Abstract Selective laser melting technology makes it possible to produce 3D cellular lattice structures with controlled porosity. The paper reflects to machining and examination of structures with predefined distribution, shape and size of the pores. In the study, the porous structures of Ti6Al4V were investigated. The tests were carried out using structures of spatial architecture of Schwarz D TPMS geometry with a total porosity of 60% and 80% and various pore sizes. Dimensional accuracy of additively manufactured structures was measured in relation to the 3D model. Geometry of the final structure differed from the CAD model in the range ± 0.3 mm. The surface morphology and porosity of the solid struts were also checked. The mechanical properties of the structures were determined in a static compression test.

2019 ◽  
Vol 9 (9) ◽  
pp. 1922 ◽  
Author(s):  
Tae Woo Hwang ◽  
Young Yun Woo ◽  
Sang Wook Han ◽  
Young Hoon Moon

The selective laser-melting (SLM) process can be applied to the additive building of complex metal parts using melting metal powder with laser scanning. A metal mesh is a common type of metal screen consisting of parallel rows and intersecting columns. It is widely used in the agricultural, industrial, transportation, and machine protection sectors. This study investigated the fabrication of parts containing a mesh pattern from the SLM of AISI 304 stainless steel powder. The formation of a mesh pattern has a strong potential to increase the functionality and cost-effectiveness of the SLM process. To fabricate a single-layered thin mesh pattern, laser layering has been conducted on a copper base plate. The high thermal conductivity of copper allows heat to pass through it quickly, and prevents the adhesion of a thin laser-melted layer. The effects of the process conditions such as the laser scan speed and scanning path on the size and dimensional accuracy of the fabricated mesh patterns were characterized. As the analysis results indicate, a part with a mesh pattern was successfully obtained, and the application of the proposed method was shown to be feasible with a high degree of reliability.


Author(s):  
Mennatallah F El Kashouty ◽  
Allan EW Rennie ◽  
Mootaz Ghazy ◽  
Ahmed Abd El Aziz

Manufacturing process constraints and design complexities are the main challenges that face the aftermarket automotive industry. For that reason, recently, selective laser melting (SLM) is being recognised as a viable approach in the fabrication of injection moulding tool inserts. Due to its versatility, SLM technology is capable of producing freeform designs. For the first reported time, in this study SLM is recognized for its novel application in overcoming fabrication complexities for prism shaped topology of a vehicle headlamp’s reflector injection moulding tool insert. Henceforth, performance measures of the SLM-fabricated injection mould tool insert is assessed in comparison to a CNC-milled counterpart to improve quality characteristics. Tests executed and detailed in this paper are divided into two stages; the first stage assesses both fabricated tool inserts in terms of manufacturability; the second stage assesses the functionality of the end-products by measuring the surface roughness, dimensional accuracy and light reflectivity from the vehicle reflectors. The results obtained show that employing SLM technology can offer an effective and efficient alternative to subtractive manufacturing, successfully producing tool inserts with complex surface topology. Significant benefits in terms of surface roughness, dimensional accuracy and product functionality were achieved through the use of SLM technology. it was concluded that the SLM-fabricated inserts products proved to have relatively lower values of surface roughness in comparison to their CNC counterparts.


2021 ◽  
Vol 15 ◽  
Author(s):  
Weishi Li ◽  
Kuanting Wang ◽  
Shiaofen Fang

Background: Selective laser melting is the best-established additive manufacturing technology for high-quality metal part manufacturing. However, the widespread acceptance of the technology is still underachieved, especially in critical applications, due to the absence of a thorough understanding of the technology, although several benchmark test artifacts have been developed to characterize the performance of selective laser melting machines. Objective: The objective of this paper is to inspire new designs of benchmark test artifacts to understand the selective laser melting process better and promote the acceptance of the selective laser melting technology. Method: The existing benchmark test artifacts for selective laser melting are analyzed comparatively, and the design guidelines are discussed. Results: The modular approach should still be adopted in designing new benchmark test artifacts in the future, and task-specific test artifacts may also need to be considered further to validate the machine performance for critical applications. The inclusion of the design model in the manufactured artifact, instead of the conformance to the design specifications, should be evaluated after the artifact is measured for the applications requiring high-dimensional accuracy and high surface quality. Conclusion: The benchmark test artifact for selective laser melting is still under development, and a breakthrough of the measuring technology for internal and/or inaccessible features will be beneficial for understanding the technology.


2018 ◽  
Vol 786 ◽  
pp. 356-363
Author(s):  
Tero Jokelainen ◽  
Kimmo Mäkelä ◽  
Aappo Mustakangas ◽  
Jari Mäkelä ◽  
Kari Mäntyjärvi

Additive Manufacturing (AM) does not yet have a standardized way to measure performance. Here a AM machines dimensional accuracy is measured trough acceptance test (AT) and AM machines capability is tested trough test parts. Test parts are created with specific geometrical features using a 3D AM machine. Performance of the machine is then evaluated trough accuracy of test parts geometry. AM machine here uses selective laser melting (SLM) process. This machine has done Factory acceptance test (FAT) to ascertain this machine ́s geometrical accuracy with material AISI 316L. Manufacturer promises accuracy of ±0.05 mm. These parts are used as comparison to AT parts made in this study. After installation two AT parts are manufactured with AM machine. One with AISI 316L and one AlSi10Mg. Dimensional accuracy of geometrical features on these parts are then compared to FAT part and to one another. Machines capability is measured trough two test parts done with material AlSi10Mg. Two of the test parts are done at the same time using same model as the FAT. Parts are printed without supports and with features facing same directions. Features of these parts were then evaluated. Another test to find out AM machines capability was to create part consisting of pipes doing 90˚ angle resulting in horizontal and vertical holes. Dimensional accuracy and circularity of holes was measured. Through these tests machines capability is benchmarked.


Materials ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 392 ◽  
Author(s):  
Xuesong Han ◽  
Haihong Zhu ◽  
Xiaojia Nie ◽  
Guoqing Wang ◽  
Xiaoyan Zeng

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3910 ◽  
Author(s):  
Kashouty ◽  
Rennie ◽  
Ghazy

Rapid Tooling processes are developing and proving to be a reliable method to compete with subtractive techniques for tool making. This paper investigates large volume production of components produced from Selective Laser Melting (SLM) fabricated injection moulding tool inserts. To date, other researchers have focused primarily on investigating the use of additive manufacturing technology for injection moulding for low-volume component production rather than high volume production. In this study, SLM technology has been used to fabricate four Stainless Steel 316L tool inserts of a similar geometry for an after-market automotive spare part. The SLM tool inserts have been evaluated to analyse the maximum number of successful injections and quality of performance. Microstructure inspection and chemical composition analysis have been investigated. Performance tests were conducted for the four tool inserts before and after injection moulding in the context of hardness testing and dimensional accuracy. For the first reported time, 150,000 injected products were successfully produced from the four SLM tool inserts. Tool inserts performance was monitored under actual operating conditions considering high-level demands. In the scope of this research, SLM proved to be a dependable manufacturing technique for most part geometries and an effective alternative to subtractive manufacturing for high-volume injection moulding tools for the aftermarket automotive sector.


2012 ◽  
Vol 535-537 ◽  
pp. 1222-1229 ◽  
Author(s):  
Francesco Cardaropoli ◽  
Vittorio Alfieri ◽  
Fabrizia Caiazzo ◽  
Vincenzo Sergi

The paper discusses the possibility of manufacturing dental implants through Selective Laser Melting (SLM) of a Ti-6Al-4V alloy powder. Among all possible biomaterials, this alloy is widely used in biomedical applications due to high biocompatibility. Selective Laser Melting allows to obtain biomaterials with peculiar characteristics in terms of porosity gradient, roughness, customized geometry, and mechanical properties. Influence of input process parameters on porosity and analysis of Selective Laser Melting capabilities in implant dentistry have been focused. Porosity is a key parameter in dental implants as it affects stiffness, which is related to Young’s modulus. Ti-6Al-4V bulk material presents a Young’s modulus of 110 GPa, whereas the bone one ranges from 10 to 26 GPa. The relative difference of mechanical properties causes the phenomenon of stress shielding, which has a detrimental effect on the longevity of dental implants. Total porosity is important in reducing the effective modulus of porous metals. Biomaterials specimens obtained during experimental phase have been examined in terms of porosity (in inverse ratio to relative density), microstructure, microhardness and roughness. According to test results discussed in this paper, Selective Laser Melting is proved to be an efficient technology for the construction of Ti-6Al-4V dental implants, because biomaterials with adequate properties can be obtained changing processing parameters. Other fabrication techniques fail to produce biomaterials for dental implants with the desired features.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4123
Author(s):  
Cosmin Cosma ◽  
Igor Drstvensek ◽  
Petru Berce ◽  
Simon Prunean ◽  
Stanisław Legutko ◽  
...  

The demand of lattice structures for medical applications is increasing due to their ability to accelerate the osseointegration process, to reduce the implant weight and the stiffness. Selective laser melting (SLM) process offers the possibility to manufacture directly complex lattice applications, but there are a few studies that have focused on biocompatible Ti6Al7Nb alloy. The purpose of this work was to investigate the physical–mechanical properties and the microstructure of three dissimilar lattice structures that were SLM-manufactured by using Ti6Al7Nb powder. In particular, the strut morphology, the fracture characterization, the metallographic structure, and the X-ray phase identification were analyzed. Additionally, the Gibson-Ashby prediction model was adapted for each lattice topology, indicating the theoretical compressive strength and Young modulus. The resulted porosity of these lattice structures was approximately 56%, and the pore size ranged from 0.40 to 0.91 mm. Under quasi-static compression test, three failure modes were recorded. Compared to fully solid specimens, the actual lattice structures reduce the elastic modulus from 104 to 6–28 GPa. The struts surfaces were covered by a large amount of partial melted grains. Some solidification defects were recorded in struts structure. The fractographs revealed a brittle rupture of struts, and their microstructure was mainly α’ martensite with columnar grains. The results demonstrate the suitability of manufacturing lattice structures made of Ti6Al7Nb powder having unique physical–mechanical properties which could meet the medical requirements.


Sign in / Sign up

Export Citation Format

Share Document