Role of secondary metabolites and pigments in the epidermal tissues, ripe ovaries, viscera, gut contents and diet of the sea cucumber Holothuria atra

1999 ◽  
Vol 133 (1) ◽  
pp. 163-169 ◽  
Author(s):  
W. M. Bandaranayake ◽  
A. Des Rocher
2021 ◽  
Vol 869 (1) ◽  
pp. 012010
Author(s):  
S Agustina ◽  
S Bella ◽  
S Karina ◽  
I Irwan ◽  
M Ulfah

Abstract Identification of sea cucumbers from Benteng Inong Balee, Aceh Besar and their phytochemistry screening were conducted in December 2020 to January 2021 at Laboratory of Marine Chemistry and Fisheries Biotechnology, Universitas Syiah Kuala. The purpose of this study was to identify the species of sea cucumbers and its secondary metabolite content using phytochemistry screening and column chromatography. The species of sea cucumbers that were identified was Holothuria atra. The extraction method used in sea cucumber extraction was maceration method, while the separation of secondary metabolites used column-chromatography with eluent of n-hexane : ethyl acetate (8:4). The results showed that secondary metabolites obtained from phytochemical tests were flavonoids, saponins and triterpenoids.


2013 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Noar Muda Satyawan ◽  
Shelly Tutupoho ◽  
Yusli Wardiatno ◽  
Makoto Tsuchiya

Erosion rate on corals due to activities of other biota is called bioerosion. The rock-boring urchin, Echinometra mathaei, when it is abundant, plays a significant role in benthic ecosystems, including biological processes like coral erosion. During feeding, E. mathaei erodes calcium carbonate besides grazing on algae living on coral, so it plays an important role in both organic and inorganic carbons in coral reefs. The urchin E. mathaei actively feeds during the night time (nocturnal grazer). Although in Okinawa four types (A-D) of the urchin exist, the research only focused on the types A and B. Type A of E. mathaei produced 0.44951 g feces per day on average while type B produced 0.38030 g feces per day. CaCO3 analysis in feces and gut contents showed bioerosion rate of E. mathaei type A was 0.64492 g/individu/day, and 0.54436 g/individu/day in type B. There were no significant differences in bioerosion impact of E. mathaei type A and B© Laju erosi pada karang yang disebabkan oleh biota, dikenal dengan bioerosi. Bulu babi jenis Echinometra mathaei, ketika melimpah, menjadi sangat berpengaruh terhadap ekosistem bentik termasuk proses biologi seperti erosi karang. Selama aktivitas makan, E. mathaei menggerus kalsium karbonat dalam proporsi yang besar di samping alga yang tumbuh menempel pada karang sehingga memiliki peran penting dalam siklus karbon organik dan anorganik di ekosistem terumbu karang. Bulu babi E. mathaei aktif mencari makan pada malam hari (nocturnal grazer). Meskipun di Okinanawa ada 4 tipe (A-D), pada eksperimen kali ini memfokuskan pada tipe A dan B saja. Tipe A E. mathaei rata-rata memproduksi 0,44951 g feses/hari dan tipe B memproduksi 0,38030 g feses/hari. Berdasarkan analisis CaCO3 yang dilakukan pada feses dan isi lambung, laju bioerosi yang disebabkan oleh E. mathaei tipe A sebesar 0,64492 g/individu/hari sedangkan tipe B sebesar 0,54436 g/individu/hari. Tidak terdapat perbedaan dampak bioerosi yang signifikan antara E. mathaei tipe A dan B©


2020 ◽  
Vol 17 (6) ◽  
pp. 466-471
Author(s):  
Usama W. Hawas ◽  
Fekri Shaher ◽  
Mohamed Ghandourah ◽  
Lamia T. Abou El-Kassem ◽  
Sathianeson Satheesh ◽  
...  

This study aimed at evaluating the antibiofilm activity of the Red Sea metabolites from green alga Avrainvillea amadelpha, sea cucumber Holothuria atra and costal plant Sarcocornia fruticosa against three biofilm bacterial strains isolated from Jeddah coast. Free fatty acids (FFAs) and other lipoidal matters were extracted from these organisms and analyzed by GC-MS. The composition of lipoidal fractions showed that A. amadelpha is rich by 74% saturated FAs, while sea cucumber H. atra revealed high content (60%) of unsaturated FAs. Palmitic acid is the major FA component in all species ranging from 14.5 to 26.7%. Phytol, sterols and hydrocarbons (C8-C29) were represented in the alga A. amadelpha as high contents with values 25.8, 21.9 and 18.5%, respectively. The extracts and lipoidal contents showed biofilm inhibitory activity against the isolated bacterial strains, where the unsaponified lipoidal fraction of S. fruticosa exhibited highest inhibitory activity against Planomicrobium sp. at concentration of 200 µg/mL.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 133 ◽  
Author(s):  
Annika Jagels ◽  
Viktoria Lindemann ◽  
Sebastian Ulrich ◽  
Christoph Gottschalk ◽  
Benedikt Cramer ◽  
...  

The genus Stachybotrys produces a broad diversity of secondary metabolites, including macrocyclic trichothecenes, atranones, and phenylspirodrimanes. Although the class of the phenylspirodrimanes is the major one and consists of a multitude of metabolites bearing various structural modifications, few investigations have been carried out. Thus, the presented study deals with the quantitative determination of several secondary metabolites produced by distinct Stachybotrys species for comparison of their metabolite profiles. For that purpose, 15 of the primarily produced secondary metabolites were isolated from fungal cultures and structurally characterized in order to be used as analytical standards for the development of an LC-MS/MS multimethod. The developed method was applied to the analysis of micro-scale extracts from 5 different Stachybotrys strains, which were cultured on different media. In that process, spontaneous dialdehyde/lactone isomerization was observed for some of the isolated secondary metabolites, and novel stachybotrychromenes were quantitatively investigated for the first time. The metabolite profiles of Stachybotrys species are considerably influenced by time of growth and substrate availability, as well as the individual biosynthetic potential of the respective species. Regarding the reported adverse effects associated with Stachybotrys growth in building environments, combinatory effects of the investigated secondary metabolites should be addressed and the role of the phenylspirodrimanes re-evaluated in future research.


2021 ◽  
Vol 41 ◽  
pp. 100959
Author(s):  
Long-Jie Yan ◽  
Le-Chang Sun ◽  
Kai-Yuan Cao ◽  
Yu-Lei Chen ◽  
Ling-Jing Zhang ◽  
...  

2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 104
Author(s):  
Ferenc Peles ◽  
Péter Sipos ◽  
Szilvia Kovács ◽  
Zoltán Győri ◽  
István Pócsi ◽  
...  

Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yong Shi ◽  
Heng Xia ◽  
Xiaoting Cheng ◽  
Libin Zhang

AbstractBackgroundOsmanthus fragransis an important economical plant containing multiple secondary metabolites including flavonoids and anthocyanins. During the past years, the roles of miRNAs in regulating the biosynthesis of secondary metabolites in plants have been widely investigated. However, few studies on miRNA expression profiles and the potential roles in regulating flavonoid biosynthesis have been reported inO. fragrans.ResultsIn this study, we used high-throughput sequencing technology to analyze the expression profiles of miRNAs in leaf and flower tissues ofO. fragrans. As a result, 106 conserved miRNAs distributed in 47 families and 88 novel miRNAs were identified. Further analysis showed there were 133 miRNAs differentially expressed in leaves and flowers. Additionally, the potential target genes of miRNAs as well as the related metabolic pathways were predicted. In the end, flavonoid content was measured in flower and leaf tissues and potential role of miR858 in regulating flavonoid synthesis was illustrated inO. fragrans.ConclusionsThis study not only provided the genome-wide miRNA profiles in the flower and leaf tissue ofO. fragrans, but also investigated the potential regulatory role of miR858a in flavonoid synthesis inO. fragrans. The results specifically indicated the connection of miRNAs to the regulation of secondary metabolite biosynthesis in non-model economical plant.


Sign in / Sign up

Export Citation Format

Share Document