scholarly journals The slip velocity of nearly neutrally buoyant tracers for large-scale PIV

2021 ◽  
Vol 62 (9) ◽  
Author(s):  
David Engler Faleiros ◽  
Marthijn Tuinstra ◽  
Andrea Sciacchitano ◽  
Fulvio Scarano

AbstractThe behaviour of nearly neutrally buoyant tracers is studied by means of experiments with helium-filled soap bubbles and numerical simulations. The current models used for estimating the slip velocity of heavy micro particles and neutrally buoyant particles are reviewed and extended to include the effect of unsteady forces and particle Reynolds number. The particle motion is analysed via numerical simulations of a rectilinear oscillatory flow and in the flow around an airfoil within a particle flow parameter space that is typical of large-scale PIV experiments. An empirical relation is obtained that estimates the particle slip velocity, depending on the particle-to-fluid density ratio, the particle Reynolds number and frequency of the local flow fluctuations. The model developed is applied to assess the slip velocity of helium-filled soap bubbles in a large-scale experiment conducted at the German–Dutch wind (DNW) tunnels in the flow around an airfoil, with chord Reynolds numbers up to three millions. Furthermore, a procedure is proposed that can be used to retrieve the bubbles mean density and dispersion from measurements of mean velocity and fluctuations, respectively. Graphic abstract

2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


2015 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kun Lei ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

Abstract The heat conduction performance of the methanol synthesis reactor is significant for the development of large-scale methanol production. The present work has measured the temperature distribution in the fixed bed at air volumetric flow rate 2.4–7 m3 · h−1, inlet air temperature 160–200°C and heating tube temperature 210–270°C. The effective radial thermal conductivity and effective wall heat transfer coefficient were derived based on the steady-state measurements and the two-dimensional heat transfer model. A correlation was proposed based on the experimental data, which related well the Nusselt number and the effective radial thermal conductivity to the particle Reynolds number ranging from 59.2 to 175.8. The heat transfer model combined with the correlation was used to calculate the temperature profiles. A comparison with the predicated temperature and the measurements was illustrated and the results showed that the predication agreed very well with the experimental results. All the absolute values of the relative errors were less than 10%, and the model was verified by experiments. Comparing the correlations of both this work with previously published showed that there are considerable discrepancies among them due to different experimental conditions. The influence of the particle Reynolds number on the temperature distribution inside the bed was also discussed and it was shown that improving particle Reynolds number contributed to enhance heat transfer in the fixed bed.


Author(s):  
Yoshimichi Hagiwara ◽  
Hideto Fujii ◽  
Katsutoshi Sakurai ◽  
Takashi Kuroda ◽  
Atsuhide Kitagawa

The Stokes number, the ratio of the particle time scale to flow time scale, is a promising quantity for estimating changes in statistics of turbulence due to particles. First, we explored the Stokes numbers in some recent studies. Secondly, we discussed the results of our direct numerical simulation for turbulent flow with a high-density particle in a vertical duct. In the discussion, we defined the particle Reynolds number from the mean fluid velocity in the near-particle region at any time. We evaluated a new local Stokes number for the particle. It is found that the Stokes number is effective for the prediction of the distance between the particle center and one wall. Finally, we carried out experiments for turbulent water flow with aluminum balls of 1 mm in diameter in a vertical channel. The motions of aluminum balls and tracer particles in the flow were captured with a high-speed video camera. We found that the experimental results for the time changes in the wall-normal distance of the ball and the particle Reynolds number for the ball are similar to the predicted results.


2014 ◽  
Vol 44 (5) ◽  
pp. 1269-1284 ◽  
Author(s):  
T. Radko ◽  
A. Bulters ◽  
J. D. Flanagan ◽  
J.-M. Campin

Abstract Three-dimensional dynamics of thermohaline staircases are investigated using a series of basin-scale staircase-resolving numerical simulations. The computational domain and forcing fields are chosen to reflect the size and structure of the North Atlantic subtropical thermocline. Salt-finger transport is parameterized using the flux-gradient formulation based on a suite of recent direct numerical simulations. Analysis of the spontaneous generation of thermohaline staircases suggests that thermohaline layering is a product of the gamma instability, associated with the variation of the flux ratio with the density ratio . After their formation, numerical staircases undergo a series of merging events, which systematically increase the size of layers. Ultimately, the system evolves into a steady equilibrium state with pronounced layers 20–50 m thick. The size of the region occupied by thermohaline staircases is controlled by the competition between turbulent mixing and double diffusion. Assuming, in accordance with observations, that staircases form when the density ratio is less than the critical value of , the authors arrive at an indirect estimate of the characteristic turbulent diffusivity in the subtropical thermocline.


Author(s):  
Dexin Wang ◽  
Zhanhua Ma ◽  
San-Mou Jeng ◽  
Michael A. Benjamin

The flow fields of large-scale simplex nozzles were investigated by 2-D back-scattered Laser Doppler Velocimetry (LDV). The internal flow structures of a simplex nozzle at two different density ratios of the working fluid and the ambient medium were obtained. The effects of the density ratio, Reynolds Number and orifice geometry on the flow structure were examined. The results revealed that the density ratio only affects the internal flow field in the region where the radius is smaller than the orifice radius. The density ratio and Reynolds Number have stronger influence on the internal flow structure of a sudden contraction and 45° expansion orifice configuration than on that of a 45° contraction and sudden expansion orifice configuration. When the density ratio is one, the effect of the contraction geometry from swirl chamber to orifice on the internal flow is very small compared to the effect of the expansion geometry.


1991 ◽  
Vol 224 ◽  
pp. 261-274 ◽  
Author(s):  
John B. McLaughlin

The motion of a small, rigid sphere in a linear shear flow is considered. Saffman's analysis is extended to other asymptotic cases in which the particle Reynolds number based on its slip velocity is comparable with or larger than the square root of the particle Reynolds number based on the velocity gradient. In all cases, both particle Reynolds numbers are assumed to be small compared to unity. It is shown that, as the Reynolds number based on particle slip velocity becomes larger than the square root of the Reynolds number based on particle shear rate, the magnitude of the inertial migration velocity rapidly decreases to very small values. The latter behaviour suggests that contributions that are higher order in the particle radius may become important in some situations of interest.


2018 ◽  
Vol 851 ◽  
pp. 148-186 ◽  
Author(s):  
Walter Fornari ◽  
Hamid Tabaei Kazerooni ◽  
Jeanette Hussong ◽  
Luca Brandt

We study the turbulent square duct flow of dense suspensions of neutrally buoyant spherical particles. Direct numerical simulations (DNS) are performed in the range of volume fractions $\unicode[STIX]{x1D719}=0{-}0.2$, using the immersed boundary method (IBM) to account for the dispersed phase. Based on the hydraulic diameter a Reynolds number of 5600 is considered. We observe that for $\unicode[STIX]{x1D719}=0.05$ and 0.1, particles preferentially accumulate on the corner bisectors, close to the corners, as also observed for laminar square duct flows of the same duct-to-particle size ratio. At the highest volume fraction, particles preferentially accumulate in the core region. For plane channel flows, in the absence of lateral confinement, particles are found instead to be uniformly distributed across the channel. The intensity of the cross-stream secondary flows increases (with respect to the unladen case) with the volume fraction up to $\unicode[STIX]{x1D719}=0.1$, as a consequence of the high concentration of particles along the corner bisector. For $\unicode[STIX]{x1D719}=0.2$ the turbulence activity is reduced and the intensity of the secondary flows reduces to below that of the unladen case. The friction Reynolds number increases with $\unicode[STIX]{x1D719}$ in dilute conditions, as observed for channel flows. However, for $\unicode[STIX]{x1D719}=0.2$ the mean friction Reynolds number is similar to that for $\unicode[STIX]{x1D719}=0.1$. By performing the turbulent kinetic energy budget, we see that the turbulence production is enhanced up to $\unicode[STIX]{x1D719}=0.1$, while for $\unicode[STIX]{x1D719}=0.2$ the production decreases below the values for $\unicode[STIX]{x1D719}=0.05$. On the other hand, the dissipation and the transport monotonically increase with $\unicode[STIX]{x1D719}$. The interphase interaction term also contributes positively to the turbulent kinetic energy budget and increases monotonically with $\unicode[STIX]{x1D719}$, in a similar way as the mean transport. Finally, we show that particles move on average faster than the fluid. However, there are regions close to the walls and at the corners where they lag behind it. In particular, for $\unicode[STIX]{x1D719}=0.05,0.1$, the slip velocity distribution at the corner bisectors seems correlated to the locations of maximum concentration: the concentration is higher where the slip velocity vanishes. The wall-normal hydrodynamic and collision forces acting on the particles push them away from the corners. The combination of these forces vanishes around the locations of maximum concentration. The total mean forces are generally low along the corner bisectors and at the core, also explaining the concentration distribution for $\unicode[STIX]{x1D719}=0.2$.


Author(s):  
D. A. Rowbury ◽  
M. L. G. Oldfield ◽  
G. D. Lock ◽  
S. N. Dancer

This paper discusses the need and the procedure for scaling discharge coefficient measurements made in an ambient temperature experiment to render them applicable to the engine situation. Among the dimensionless parameters affecting the discharge coefficients of film cooling holes are the Reynolds number and the coolant Mach number. Experiments have been conducted in a large scale annular blowdown cascade of film cooled nozzle guide vanes. The coolant system design, using a heavy ‘foreign gas’ (an SF6/Ar mixture) at ambient temperatures, allows the coolant-to-mainstream density ratio and blowing parameters to be matched to engine values. By using elevated pressure tests, the effect of varying the coolant Reynolds number without external flow is observed experimentally and these results are then used to correct the discharge coefficients measured on the vane with external crossflow. Data is presented and discussed for two cooling hole geometries, namely cylindrical and fanshaped holes.


2005 ◽  
Vol 35 (6) ◽  
pp. 1004-1022 ◽  
Author(s):  
W. D. Smyth ◽  
J. D. Nash ◽  
J. N. Moum

Abstract Direct numerical simulations are used to compare turbulent diffusivities of heat and salt during the growth and collapse of Kelvin–Helmholtz billows. The ratio of diffusivities is obtained as a function of buoyancy Reynolds number Reb and of the density ratio Rρ (the ratio of the contributions of heat and salt to the density stratification). The diffusivity ratio is generally less than unity (heat is mixed more effectively than salt), but it approaches unity with increasing Reb and also with increasing Rρ. Instantaneous diffusivity ratios near unity are achieved during the most turbulent phase of the event even when Reb is small; much of the Reb dependence results from the fact that, at higher Reb, the diffusivity ratio remains close to unity for a longer time after the turbulence decays. An explanation for this is proposed in terms of the Batchelor scaling for scalar fields. Results are interpreted in terms of the dynamics of turbulent Kelvin–Helmholtz billows, and are compared in detail with previous studies of differential diffusion in numerical, laboratory, and observational contexts. The overall picture suggests that the diffusivities become approximately equal when Reb exceeds O(102). The effect of Rρ is significant only when Reb is less than this value.


Sign in / Sign up

Export Citation Format

Share Document