Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta

Planta ◽  
2003 ◽  
Vol 216 (4) ◽  
pp. 614-619 ◽  
Author(s):  
Anthony J. Clark ◽  
Kerry J. Blissett ◽  
Richard P. Oliver
2012 ◽  
Vol 25 (6) ◽  
pp. 802-816 ◽  
Author(s):  
Jens Heller ◽  
Nadja Ruhnke ◽  
José Juan Espino ◽  
Michelli Massaroli ◽  
Isidro Gonzalez Collado ◽  
...  

The mitogen-activated protein kinase (MAPK) BcSak1 of Botrytis cinerea is activated upon exposure to H2O2 and, hence, might be involved in coping with oxidative stress during infection. However, beside osmotic and oxidative stress sensitivity, Δbcsak1 mutants have a pleiotropic phenotype, as they do not produce conidia and are unable to penetrate unwounded host tissue. In this study, the role of BcSak1 was investigated in the stress response and during infection of French beans by Botrytis cinerea. Using a macroarray approach, it was shown that BcSak1 is only marginally involved in the specific oxidative stress response. In fact, the induction of several genes after oxidative stress treatment is BcSak1-dependent, but most of these genes are also induced under conditions of osmotic stress. The majority of genes regulated by BcSak1 are not involved in the stress response at all. Using a translational fusion of BcSak1 to green fluorescent protein, it was shown clearly that the localization of this MAPK depends on the type of stress being applied; it associates rapidly to the nucleus only under osmotic stress. Therefore, a model is proposed in which BcSak1 acts in the cytosol by activation of one or more transcription factors under oxidative stress and, at the same time, it reacts to osmotic stress by migrating to the nucleus. Interestingly, the MAPK is also involved in the regulation of secondary metabolism, as the major phytotoxins secreted by this fungus are reduced in the Δbcsak1 deletion mutant. Experiments done in planta underlined the essential role of BcSak1 in the early stages of infection, when it translocates to the nucleus and then changes to cytosolic distribution during hyphal growth within the tissue.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Alessio Valletta ◽  
Lorenzo Maria Iozia ◽  
Francesca Leonelli

Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2021 ◽  
Vol 22 (5) ◽  
pp. 2435
Author(s):  
Marzia Beccaccioli ◽  
Manuel Salustri ◽  
Valeria Scala ◽  
Matteo Ludovici ◽  
Andrea Cacciotti ◽  
...  

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2007 ◽  
Vol 55 (10) ◽  
pp. 1518-1521 ◽  
Author(s):  
Kiyoshi Ohyama ◽  
Masashi Suzuki ◽  
Kazuo Masuda ◽  
Shigeo Yoshida ◽  
Toshiya Muranaka

Author(s):  
Maryam Mozafariyan Meimandi ◽  
Noémi Kappel ◽  
Mohammad Pessarakli

2017 ◽  
Author(s):  
Carl H. Mesarich ◽  
Bilal Ökmen ◽  
Hanna Rovenich ◽  
Scott A. Griffiths ◽  
Changchun Wang ◽  
...  

ABSTRACTTomato leaf mould disease is caused by the biotrophic fungusCladosporium fulvum. During infection,C. fulvumproduces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed byCfimmune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent.C. fulvumstrains capable of overcoming one or more of all clonedCfgenes have now emerged. To combat these strains, newCfgenes are required. An effectoromics approach was employed to identify wild tomato accessions carrying newCfgenes. Proteomics and transcriptome sequencing were first used to identify 70 apoplasticin planta-inducedC. fulvumSSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe−microbe interactionsin planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs using thePotato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry newCfgenes available for incorporation into cultivated tomato.


Sign in / Sign up

Export Citation Format

Share Document