scholarly journals Effects of ambient temperature during the nestling stage on a stress indicator in nestling pied flycatchers Ficedula hypoleuca

Author(s):  
Joanna Skwarska ◽  
Agnieszka Podstawczyńska ◽  
Mirosława Bańbura ◽  
Michał Glądalski ◽  
Adam Kaliński ◽  
...  

AbstractLong-term and short-term changes in ambient temperature can cause stress in birds, leading to changes in the level of hematological parameters. The H:L ratio (heterophil-to-lymphocyte ratio) is a hematological index that allows for the assessment of the stress induced by environmental changes, including weather conditions. In this paper, we examined the influence of temperatures and the sum of precipitation on the health of nestling pied flycatchers (Ficedula hypoleuca) by using the H:L ratio reflecting the body’s response to stress. All examined temperature indicators influenced the H:L ratio, yet the average value of daily minimum temperature during the first 12 days of nestling life had the strongest influence, maximum temperature had the weakest effect, while precipitation had no significant influence. Our research indicates that even a small increase in temperature caused a stress reaction in nestling pied flycatchers, which was reflected by an increase in the H:L ratio. The increase in the stress index (H:L ratio) was probably a result of poor weather conditions (precipitation, low temperature), which prevented the adult birds from actively foraging and properly feeding the nestlings.

2012 ◽  
Vol 503-504 ◽  
pp. 1672-1678
Author(s):  
Zhao Yang ◽  
Xiao Ping Xu ◽  
Chuan Li ◽  
Yan Chen ◽  
Jiang Chun Xu ◽  
...  

The charge unit supply power when the power is cut off. It has been the necessary components in every type of substations to ensure the continuous operations of electric relays, automatic devices and circuit breakers. By using contacting electrical insulating Fiber Bragg Grating temperature sensor, the monitored equipment can be measured and controlled under the safe temperature. The temperatures of three fans and environment have been surveyed since June 6, 2010, in the charge unit of Yanjin substation’s main control room. The real-time monitoring of 24-hours indicates that the temperature changes in the range of 1°C. At the long-term of 479 days, the average daily minimum temperature range of three fans is 12.48°C, and the maximum range is 23.07°C. The maximum temperature is 39.14°C on April 30, 2011, and the minimum temperature is 23.98°C on January 10, 2011. The daily average of ambient temperature range is 12.04 °C, the maximum temperature is 38.38 °C on July 16, 2010, and the minimum temperature is 26.34 °C on January 9, 2011. The maximum difference between the temperature of fan and the ambient temperature is 7.60 °C on October 23, 2010. According to the relevant standards and monitoring results, the maximum threshold of fan temperature is defined to 85°C, and the threshold of temperature rise is 20°C.


2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Costas A. Christophi ◽  
Mercedes Sotos-Prieto ◽  
Fan-Yun Lan ◽  
Mario Delgado-Velandia ◽  
Vasilis Efthymiou ◽  
...  

AbstractEpidemiological studies have yielded conflicting results regarding climate and incident SARS-CoV-2 infection, and seasonality of infection rates is debated. Moreover, few studies have focused on COVD-19 deaths. We studied the association of average ambient temperature with subsequent COVID-19 mortality in the OECD countries and the individual United States (US), while accounting for other important meteorological and non-meteorological co-variates. The exposure of interest was average temperature and other weather conditions, measured at 25 days prior and 25 days after the first reported COVID-19 death was collected in the OECD countries and US states. The outcome of interest was cumulative COVID-19 mortality, assessed for each region at 25, 30, 35, and 40 days after the first reported death. Analyses were performed with negative binomial regression and adjusted for other weather conditions, particulate matter, sociodemographic factors, smoking, obesity, ICU beds, and social distancing. A 1 °C increase in ambient temperature was associated with 6% lower COVID-19 mortality at 30 days following the first reported death (multivariate-adjusted mortality rate ratio: 0.94, 95% CI 0.90, 0.99, p = 0.016). The results were robust for COVID-19 mortality at 25, 35 and 40 days after the first death, as well as other sensitivity analyses. The results provide consistent evidence across various models of an inverse association between higher average temperatures and subsequent COVID-19 mortality rates after accounting for other meteorological variables and predictors of SARS-CoV-2 infection or death. This suggests potentially decreased viral transmission in warmer regions and during the summer season.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 489
Author(s):  
Jinxiu Liu ◽  
Weihao Shen ◽  
Yaqian He

India has experienced extensive land cover and land use change (LCLUC). However, there is still limited empirical research regarding the impact of LCLUC on climate extremes in India. Here, we applied statistical methods to assess how cropland expansion has influenced temperature extremes in India from 1982 to 2015 using a new land cover and land use dataset and ECMWF Reanalysis V5 (ERA5) climate data. Our results show that during the last 34 years, croplands in western India increased by ~33.7 percentage points. This cropland expansion shows a significantly negative impact on the maxima of daily maximum temperature (TXx), while its impacts on the maxima of daily minimum temperature and the minima of daily maximum and minimum temperature are limited. It is estimated that if cropland expansion had not taken place in western India over the 1982 to 2015 period, TXx would likely have increased by 0.74 (±0.64) °C. The negative impact of croplands on reducing the TXx extreme is likely due to evaporative cooling from intensified evapotranspiration associated with croplands, resulting in increased latent heat flux and decreased sensible heat flux. This study underscores the important influences of cropland expansion on temperature extremes and can be applicable to other geographic regions experiencing LCLUC.


2015 ◽  
Vol 713-715 ◽  
pp. 304-313
Author(s):  
Shu Guang Wang ◽  
Wei Yang ◽  
Qing Chen ◽  
Jian Hua Chen ◽  
Cong Han

The regularity of radon exhalation rate in the over-broken granite tunnel is susceptible to weather conditions and ventilation styles. Based on the calculation model of radon exhalation in tunnel, some experiments have been carried out to analyze the variations of radon exhalation in cases of natural ventilation, blowing ventilation and exhaust ventilation separately. The results show that there is a linear relation between the radon exhalation and the natural ventilation quantity, and also between the radon exhalation and the ambient temperature; the radon exhalation in the case of exhaust ventilation is 63% higher than that in the blowing case under the condition of the same ventilation quantity and ambient temperature. Therefore, it is suggested that operation in the tunnel in high temperature be avoided in summer, and the blowing ventilation be adopted as an effective way for ventilation.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


Author(s):  
Sangchae Kim ◽  
Bharath Bethala ◽  
Simone Ghirlanda ◽  
Senthil N. Sambandam ◽  
Shekhar Bhansali

Magnetocaloric refrigeration is increasingly being explored as an alternative technology for cooling. This paper presents the design and fabrication of a micromachined magnetocaloric cooler. The cooler consists of fluidic microchannels (in a Si wafer), diffused temperature sensors, and a Gd5(Si2Ge2) magnetocaloric refrigeration element. A magnetic field of 1.5 T is applied using an electromagnet to change the entropy of the magnetocaloric element for different ambient temperature conditions ranging from 258 K to 280 K, and the results are discussed. The tests show a maximum temperature change of 7 K on the magnetocaloric element at 258 K. The experimental results co-relate well with the entropy change of the material.


2000 ◽  
Vol 78 (10) ◽  
pp. 1831-1839 ◽  
Author(s):  
P Sound ◽  
M Veith

Daily activity patterns of male western green lizards, Lacerta bilineata (Daudin, 1802), at the edge of their northern distribution range in western Germany after the breeding season from June to October were recorded using implanted radio transmitters. Different activity indices discriminating between stimulation, duration, and length of movement were correlated with actual weather conditions (d0) and with weather conditions on the 2 previous days (d-1 and d-2). The lizards' dependence on weather showed two different phases throughout the study period. During the first period and in the period preceding a drastic change of weather in midsummer, weather had no significant influence on movement parameters. After that event, temperatures dropped and a strong dependence on weather of all movement parameters except those indicating displacements became apparent. Thresholds for 50% activity during this second phase were a maximum temperature of 17°C and a minimum humidity of 35%. Two days after periods of bad weather, the influence of weather conditions increased again. This can be explained by physiological deficits that require compensation during the period of marginal weather conditions prior to hibernation. Displacement movements were significantly longer than home-range movements and were neither triggered nor modulated by the weather. They must therefore represent activities such as patrolling territory boundaries.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


Sign in / Sign up

Export Citation Format

Share Document