A meiotic time-course for Arabidopsis thaliana

2003 ◽  
Vol 16 (3) ◽  
pp. 141-149 ◽  
Author(s):  
S. J. Armstrong ◽  
F. C. H. Franklin ◽  
G. H. Jones
Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1729
Author(s):  
Monirul Islam ◽  
Gianpiero Vigani ◽  
Massimo E. Maffei

The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 μT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.


2008 ◽  
Vol 35 (11) ◽  
pp. 1147 ◽  
Author(s):  
Angélique Christophe ◽  
Véronique Letort ◽  
Irène Hummel ◽  
Paul-Henry Cournède ◽  
Philippe de Reffye ◽  
...  

Arabidopsis thaliana (L.) Heynh. is used as a model plant in many research projects. However, few models simulate its growth at the whole-plant scale. The present study describes the first model of Arabidopsis growth integrating organogenesis, morphogenesis and carbon-partitioning processes for aerial and subterranean parts of the plant throughout its development. The objective was to analyse competition among sinks as they emerge from patterns of plant structural development. The model was adapted from the GreenLab model and was used to estimate organ sink strengths by optimisation against biomass measurements. Dry biomass production was calculated by a radiation use efficiency-based approach. Organogenesis processes were parameterised based on experimental data. The potential of this model for growth analysis was assessed using the Columbia ecotype, which was grown in standard environmental conditions. Three phases were observed in the overall time course of trophic competition within the plant. In the vegetative phase, no competition was observed. In the reproductive phase, competition increased with a strong increase when lateral inflorescences developed. Roots and internodes and structures bearing siliques were strong sinks and had a similar impact on competition. The application of the GreenLab model to the growth analysis of A. thaliana provides new insights into source–sink relationships as functions of phenology and morphogenesis.


1999 ◽  
Vol 124 (2) ◽  
pp. 136-139 ◽  
Author(s):  
Takuro Suyama ◽  
Kunio Yamada ◽  
Hitoshi Mori ◽  
Kiyotoshi Takeno ◽  
Shohei Yamaki

A cDNA library was constructed from poly(A)+RNA extracted from pollinated fruit of `PMR-142' cucumber (Cucumis sativus L.). Subtraction hybridization was made between the cDNAs and poly(A)+RNA from unpollinated fruit to isolate cDNA clones that corresponded to the genes preferentially expressed in the pollinated fruit. We isolated three cDNAs, which were 756, 826, and 998 nucleotides long and designated Csf1, Csf2, and Csf3, respectively. When fruit growth was triggered by pollination, auxin treatment and natural parthenocarpy, Csf2 was always expressed. Time course of expression of the Csf2 gene was nearly parallel to that of the fruit growth. Nucleotide sequences of the Csf cDNAs were fully determined. Homology of the deduced amino acid sequence for Csf1 showed 75% identity with a pea extensin. Only 37%, 33%, and 26% homology was found between Csf2 and bell pepper CaSn-2, tobacco FB7-4, and opium poppy gMLP15, respectively. The Csf3 sequence showed 68% identity with the large subunit of 60S ribosomal protein L3 of Arabidopsis thaliana.


2020 ◽  
Author(s):  
Venkatesh P. Thirumalaikumar ◽  
Mateusz Wagner ◽  
Salma Balazadeh ◽  
Aleksandra Skirycz

AbstractProteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis.


2006 ◽  
Vol 58 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Jae Kwang Kim ◽  
Takeshi Bamba ◽  
Kazuo Harada ◽  
Eiichiro Fukusaki ◽  
Akio Kobayashi

2018 ◽  
Author(s):  
Sandra Cortijo ◽  
Zeynep Aydin ◽  
Sebastian Ahnert ◽  
James Locke

AbstractA fundamental question in biology is how gene expression is regulated to give rise to a phenotype. However, transcriptional variability is rarely considered and could influence the relationship between genotype and phenotype. It is known in unicellular organisms that gene expression is often noisy rather than uniform and this has been proposed to be beneficial when environmental conditions are unpredictable. However, little is known about transcriptional variability in plants. Using transcriptomic approaches, we analysed gene expression variability between individual Arabidopsis thaliana plants growing in identical conditions over a 24 hour time-course. We identified hundreds of genes that exhibit high inter-individual variability and found that many are involved in environmental responses. We also identified factors that might facilitate gene expression variability, such as gene length, the number of transcription factors regulating the genes and the chromatin environment. These results shed new light on the impact of transcriptional variability in gene expression regulation in plants.


2002 ◽  
Vol 30 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Jean-Emmanuel Faure ◽  
Nicolas Rotman ◽  
Philippe Fortune ◽  
Christian Dumas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher Pries ◽  
Zahra Razaghi-Moghadam ◽  
Joachim Kopka ◽  
Zoran Nikoloski

AbstractRibosome biogenesis is tightly associated to plant metabolism due to the usage of ribosomes in the synthesis of proteins necessary to drive metabolic pathways. Given the central role of ribosome biogenesis in cell physiology, it is important to characterize the impact of different components involved in this process on plant metabolism. Double mutants of the Arabidopsis thaliana cytosolic 60S maturation factors REIL1 and REIL2 do not resume growth after shift to moderate 10 $$^{\circ }\hbox {C}$$ ∘ C chilling conditions. To gain mechanistic insights into the metabolic effects of this ribosome biogenesis defect on metabolism, we developed TC-iReMet2, a constraint-based modelling approach that integrates relative metabolomics and transcriptomics time-course data to predict differential fluxes on a genome-scale level. We employed TC-iReMet2 with metabolomics and transcriptomics data from the Arabidopsis Columbia 0 wild type and the reil1-1 reil2-1 double mutant before and after cold shift. We identified reactions and pathways that are highly altered in a mutant relative to the wild type. These pathways include the Calvin–Benson cycle, photorespiration, gluconeogenesis, and glycolysis. Our findings also indicated differential NAD(P)/NAD(P)H ratios after cold shift. TC-iReMet2 allows for mechanistic hypothesis generation and interpretation of system biology experiments related to metabolic fluxes on a genome-scale level.


Sign in / Sign up

Export Citation Format

Share Document