scholarly journals Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions

2012 ◽  
Vol 19 (4) ◽  
pp. 635-643 ◽  
Author(s):  
Krzysztof P. Rola ◽  
Irena Zubel
1999 ◽  
Vol 594 ◽  
Author(s):  
M. E. Ware ◽  
R. J. Nemanich

AbstractThis study explores stress relaxation of epitaxial SiGe layers grown on Si substrates with unique orientations. The crystallographic orientations of the Si substrates used were off-axis from the (001) plane towards the (111) plane by angles, θ = 0, 10, and 22 degrees. We have grown 100nm thick Si(1−x) Ge(x) epitaxial layers with x=0.3 on the Si substrates to examine the relaxation process. The as-deposited films are metastable to the formation of strain relaxing misfit dislocations, and thermal annealing is used to obtain highly relaxed films for comparison. Raman spectroscopy has been used to measure the strain relaxation, and atomic force microscopy has been used to explore the development of surface morphology. The Raman scattering indicated that the strain in the as-deposited films is dependent on the substrate orientation with strained layers grown on Si with 0 and 22 degree orientations while highly relaxed films were grown on the 10 degree substrate. The surface morphology also differed for the substrate orientations. The 10 degree surface is relatively smooth with hut shaped structures oriented at predicted angles relative to the step edges.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Jae-Kwan Kim ◽  
Jun Young Kim ◽  
Seung-Cheol Han ◽  
Joon Seop Kwak ◽  
Ji-Myon Lee

AbstractThe etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.


2004 ◽  
Vol 809 ◽  
Author(s):  
Klara Lyutovich ◽  
Erich Kasper ◽  
Michael Oehme

ABSTRACTVirtual substrates with ultra-thin SiGe strain relaxed buffers have been grown on Si substrates by a method employing point defect supersaturation in the growing layers. A concept of the point defect influence on the strain relaxation and on defect interactions in layers has been proposed. A method is developed to increase the degree of relaxation in sub-100 nm SiGe buffer layers and to provide a smooth surface morphology. Layer growth has been realized by solid source molecular beam epitaxy in a chamber equipped with an in situ monitoring system. One of the growth stages, performed at a very low temperature, serves the generation of point defects. Strain relaxation tunable up to the high degree and a crosshatch-free surface morphology are demonstrated in 40nm thick SiGe buffers which contain 40-45% Ge.Growth monitoring enables the control of the process window and the layer crystallization by a chosen mechanism.Virtual substrates produced by the described method were successfully tested in nMODFET structures.


2003 ◽  
Vol 799 ◽  
Author(s):  
Vinay S. Kulkarni ◽  
Kanti Prasad ◽  
William Quinn ◽  
Frank Spooner ◽  
Changmo Sung

ABSTRACTPseudomorphic HEMT (p-HEMT) devices are used in a number of wireless communication applications including power amplifiers in the 17–50 GHz range, low noise amplifiers and switches. Selective wet etching is often used to form the gate regions of these devices to avoid plasma damage associated with dry etching. We have investigated the wet etching of small (8μm to 0.5μm) features with organic acid - hydrogen peroxide solutions. Two acid solutions were used as a selective etchant for GaAs using AlAs etch stop layers in a p-HEMT structure grown by MBE. The etched features were characterized by AFM, SEM, and TEM techniques. The etch depth uniformity and reproducibility were found to depend on a number of factors including feature size, feature density, etching chemistry, agitation and surface tension. When features with a range of size and density were placed in close proximity in a layout we found that the etch rate of the different features was a function of density, size and most importantly the etch chemistry. One etchant solution exhibited a 12% difference in etch rate from the smallest feature to the largest, while another solution exhibited uniform etching of all features regardless of size or density. Both solutions produced specular etched surfaces in GaAs and AlGaAs. However, the AlAs etch stop showed a non-uniform surface morphology after etching. The surface morphology of the AlAs etch stop is one factor that limits the over etch which can be designed into the process. The most important factors to be considered in designing a selective etch process will be presented.


1984 ◽  
Vol 45 (5) ◽  
pp. 519-521 ◽  
Author(s):  
R. W. Fathauer ◽  
L. J. Schowalter

2014 ◽  
Vol 778-780 ◽  
pp. 251-254 ◽  
Author(s):  
Kazuki Meguro ◽  
Tsugutada Narita ◽  
Kaon Noto ◽  
Hideki Nakazawa

We have formed a SiC interfacial buffer layer on AlN/Si substrates at a low temperature by low-pressure chemical vapor deposition (LPCVD) using monomethylsilane (CH3SiH3; MMS), and grew 3C-SiC films on the low-temperature buffer layer by LPCVD using MMS. We investigated the surface morphology and crystallinity of the grown SiC films. It was found that the formation of the SiC buffer layer suppressed the outdiffusion of Al and N atoms from the AlN intermediate layer to the SiC films and further improved the surface morphology and crystallinity of the films.


1999 ◽  
Vol 4 (S1) ◽  
pp. 914-919 ◽  
Author(s):  
J. T. Hsieh ◽  
J. M. Hwang ◽  
H. L. Hwang ◽  
W. H. Hung

Damage-free etching of GaN by Cl2, assisted by an ArF (193 nm) excimer laser, is demonstrated. At low temperatures, photo-assisted etching can provide a better etch rate and largely improve the surface morphology and quality. AFM results show that the etched GaN surface is obtained with a root-mean-square roughness of 1.7 nm. As compared with the photoluminescence spectra of photoelectrochemical wet etched GaN, the photo-assisted cryogenic etching is proved to be a damage-free dry etching technique.


1989 ◽  
Vol 158 ◽  
Author(s):  
S. J. Pearton ◽  
W. S. Hobson ◽  
K. S. Jones

ABSTRACTThe temperature dependence of etch rate, surface morphology and atomic composition, and depth of hydrogen passivation of Si dopants in n-type GaAs and AIGaAs has been measured for reactive ion etching in C2H6 /H2. The etching of GaAs shows an increase of a factor of two between 150 and 250°C, decreasing at higher temperatures, while there is no temperature dependence for the etch rate of AlGaAs over the range 50-350°C. The As-to-Ga ratio in the nearsurface region of GaAs remains unchanged over the whole temperature range investigated and there is no polymer deposition. The etched surface morphology is smooth for both GaAs and AIGaAs for all temperatures while the depth of Si dopant passivation by hydrogen shows an increase with increasing substrate temperature during the etching treatment.


2008 ◽  
Vol 41 (2) ◽  
pp. 356-362 ◽  
Author(s):  
Hsin-Yi Lee ◽  
Tzu-Wen Huang ◽  
Chih-Hao Lee ◽  
Yung-Wei Hsieh

The temporal variation of the surface morphology of Ta2O5films on Si substrates has been measured using X-ray reflectivity at a fixed angle during radio-frequency magnetron sputtering. During an early stage of growth of polycrystalline Ta2O5, the variation of surface roughness revealed a morphology of island nucleation and island coalescence. For a thickness greater than 7 nm, the surface roughness increased, to more than 2 nm at a thickness of 80 nm. For crystalline Ta2O5films, the density of sputtered Ta2O5films increased and attained the bulk value for a film only at a thickness greater than 80 nm. For an amorphous sputtered film, the surface was less rough and the density was less than that for a crystalline film.


Sign in / Sign up

Export Citation Format

Share Document