scholarly journals Visualisation of H2O2 penetration through skin indicates importance to develop pathway-specific epidermal sensing

2020 ◽  
Vol 187 (12) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Anaïs Labrousse ◽  
Léa Prévaud ◽  
Bo Holmqvist ◽  
Anders Brinte ◽  
...  

AbstractElevated amounts of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) are observed in the epidermis in different skin disorders. Thus, epidermal sensing of H2O2 should be useful to monitor the progression of skin pathologies. We have evaluated epidermal sensing of H2O2 in vitro, by visualising H2O2 permeation through the skin. Skin membranes were mounted in Franz cells, and a suspension of Prussian white microparticles was deposited on the stratum corneum face of the skin. Upon H2O2 permeation, Prussian white was oxidised to Prussian blue, resulting in a pattern of blue dots. Comparison of skin surface images with the dot patterns revealed that about 74% of the blue dots were associated with hair shafts. The degree of the Prussian white to Prussian blue conversion strongly correlated with the reciprocal resistance of the skin membranes. Together, the results demonstrate that hair follicles are the major pathways of H2O2 transdermal penetration. The study recommends that the development of H2O2 monitoring on skin should aim for pathway-specific epidermal sensing, allowing micrometre resolution to detect and quantify this ROS biomarker at hair follicles.Graphical abstract

Nanomedicine ◽  
2019 ◽  
Vol 14 (19) ◽  
pp. 2567-2578 ◽  
Author(s):  
Hyeryeon Oh ◽  
Jin Sil Lee ◽  
Daekyung Sung ◽  
Jin Hyung Lee ◽  
Sang Hyun Moh ◽  
...  

Aim: Prussian blue nanoparticles (PB NPs) have been reported as excellent antioxidant agents owing to their ability to scavenge reactive oxygen species. However, their poor stability in vivo limits their use in biomedical applications. Materials & methods: In this study, we developed chitosan-templated PB NPs using water-soluble chitosan samples with molecular weights ranging from 3 to 100 kDa, which stabilized the PB NPs and improved their antioxidant activity. Results & conclusion: The chitosan-templated PB NPs coordinated with the optimal chitosan molecular weight had uniform sphere-like particles, improved stability and effective scavenging activity of in vitro reactive oxygen species generation in murine fibroblast cells stimulated by oxidative stress agents without any cytotoxicity, implying that they could be promising antioxidant agents.


2019 ◽  
Vol 33 (9) ◽  
pp. 1202-1213 ◽  
Author(s):  
Hao Li ◽  
Wei Zhang ◽  
Li Ding ◽  
Xing-Wang Li ◽  
Yang Wu ◽  
...  

To realize the photothermal therapy ability of Prussian blue-modified ferritin nanoparticles (PB-Ft NPs) and its synergistic effect with chemotherapy, PB-Ft NPs were synthesized by a simple surface double decomposition reaction. Mean sizes of ferritin and PB-Ft NPs were 10.4 nm and 12.6 nm, respectively. The obtained PB-Ft NPs were verified to have both the photothermal conversion ability of Prussian blue and the morphology of ferritin. The in vitro and in vivo photothermal therapy results confirm PB-Ft NPs can successfully inhibit the growth of murine breast cancer cell line (4T1) without any obvious side effect. Moreover, taking use of the peroxidase-like activity of PB-Ft NPs, the photothermal therapy effect of PB-Ft NPs effectively improved the curative effect of gemcitabine (GEM) via enhancing reactive oxygen species production. The obtained PB-Ft NPs can be served as a useful and safe photothermal therapy agent in breast cancer. Moreover, PB-Ft NPs-assisted photothermal therapy can be applied as an adjunctive therapy with various established cancer treatments such as chemotherapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olfa Chiboub ◽  
Ines Sifaoui ◽  
Manef Abderrabba ◽  
Mondher Mejri ◽  
José J. Fernández ◽  
...  

Abstract Background The in vitro activity of the brown seaweed Dictyota spiralis against both Leishmania amazonensis and Trypanosoma cruzi was evaluated in a previous study. Processing by bio-guided fractionation resulted in the isolation of three active compounds, classified as diterpenes. In the present study, we performed several assays to detect clinical features associated to cell death in L. amazonensis and T. cruzi with the aim to elucidate the mechanism of action of these compounds on parasitic cells. Methods The aims of the experiments were to detect and evaluate specific events involved in apoptosis-like cell death in the kinetoplastid, including DNA condensation, accumulation of reactive oxygen species and changes in ATP concentration, cell permeability and mitochondrial membrane potential, respectively, in treated cells. Results The results demonstrated that the three isolated diterpenes could inhibit the tested parasites by inducing an apoptosis-like cell death. Conclusions These results encourage further investigation on the isolated compounds as potential drug candidates against both L. amazonensis and T. cruzi. Graphic abstract


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 936
Author(s):  
Olga Witkowska-Piłaszewicz ◽  
Rafał Pingwara ◽  
Jarosław Szczepaniak ◽  
Anna Winnicka

Clenbuterol, the β2-adrenoceptor agonist, is gaining growing popularity because of its effects on weight loss (i.e., chemical liposuction). It is also popular in bodybuilding and professional sports, due to its effects that are similar to anabolic steroids. However, it is prohibited by anti-doping control. On the other hand, it is suggested that clenbuterol can inhibit the inflammatory process. The cells from 14 untrained and 14 well-trained race horses were collected after acute exercise and cultured with clenbuterol. The expressions of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ and TNF-α concentrations were evaluated by ELISA. β2-adrenoceptor stimulation leads to enhanced anti-inflammatory properties in well-trained horses, as do low doses in untrained animals. In contrast, higher clenbuterol doses create a pro-inflammatory environment in inexperienced horses. In conclusion, β2-adrenoceptor stimulation leads to a biphasic response. In addition, the immune cells are more sensitive to drug abuse in inexperienced individuals under physical training.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


Sign in / Sign up

Export Citation Format

Share Document