scholarly journals Changes in the characteristics of ‘wet’ and ‘dry’ Red Sea Trough over the Eastern Mediterranean in CMIP5 climate projections

2020 ◽  
Vol 143 (1-2) ◽  
pp. 781-794
Author(s):  
Assaf Hochman ◽  
Dorita Rostkier-Edelstein ◽  
Pavel Kunin ◽  
Joaquim G. Pinto

AbstractThe Eastern Mediterranean resides on the border between the temperate and semi-arid and arid climate zones, and is thus influenced by both mid-latitude and sub-tropical weather systems. Precipitation and extreme weather in this region are mainly associated with either Cyprus Lows or the “wet” Red Sea Troughs. Current regional climate projections indicate that the region may become warmer and drier in future decades. Here, we analyze the influence of enhanced greenhouse gas forcing on the climatological properties of the ‘wet’ and ‘dry’ Red Sea Trough (WRST & DRST, respectively). With this aim, a regional synoptic classification and a downscaling algorithm based on past analogs are applied to eighteen rain stations over the main ground water basins in Israel. The algorithms are applied to the NCEP/NCAR reanalysis data for 1986–2005 and to eight CMIP5 model simulations for the historical (1986–2005) and end of the century (2081–2100) climate conditions according to the RCP8.5 scenario. For the historical period, the CMIP5 models are largely able to represent the characteristics of the Red Sea Trough. Based on the multi-model mean, significant changes are found for WRST and DRST for the late XXI Century. First, an increase in the meridional pressure gradient is found for both the WRST and the DRST, implying stronger horizontal winds. Furthermore, a significant decrease in the occurrence of the WRST (− 20%) and a significant increase in the frequency of the DRST (+ 19%) are identified. Accordingly, the persistence of the WRST decreases (− 9%), while for DRST increases (+ 9%). The decline in the frequency of WRST occurs primarily in the transition seasons, while the increase for DRST is found throughout the wet season. In total, the daily rainfall associated with the WRST system is projected to significantly decline (− 37%) by the end of the XXI century. These results document the projected changes in a dominant synoptic system in this area, which can facilitate a better estimation of the arising challenges, e.g., related to shortage of water resources and associated political unrest, reduced agricultural potential, and increased air pollution and forest fires. Such a pathway can ultimately foster novel mitigation strategies for water resources management and regional climate change adaptation.

2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2015 ◽  
Vol 19 (12) ◽  
pp. 4783-4810 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960–2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990–2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.


2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.


2020 ◽  
Author(s):  
Paolo Stocchi ◽  
Emanuela Pichelli ◽  
Erika Coppola ◽  
Jose Abraham Torres Alvarez ◽  
Filippo Giorgi

<p>The recent increase in climate modeling activities at convection permitting scales (grid spacing under 4 km) has strongly been motivated by the increased computer capacities in the last years with the aim to reduce the model errors associated with parameterized convection and a more detailed representation of present and future regional climate. Some Regional climate projects addressing on convection permitting modeling simulations and projections have been recently implemented to make more robust conclusions on the added value of convection permitting simulation to future climate projections. Here, we present convection resolving climate simulations performed in the framework the European Climate Prediction System (EUCP) project, using the non-hydrostatic version of the RegCM model. The RegCM simulations have a grid spacing of 3 km, over three different regions (Pan-Alpine, Central Europe, and South-East Europe). These simulations were driven by initial and boundary conditions built from intermediate 12 km simulations driven by the global climate model (GCM) HadGEM2-ES. We considered three time slices each one of them covering a 10-year period, the historical (1996-2005), the near future (2041-2050) and the far future (2090-2099) under the RCP8.5 scenario. The high resolutions (3 km) simulations, over the historical period, are evaluated through comparison with available observations data sets (including in-situ and satellite-based observation of precipitation) and coarse resolution (12 km) simulation is used as benchmark. The kilometer-scale RegCM4.7 scenario (RCP8.5) simulations, driven by HadGEM2-ES, near future (2041-2050) and the far future (2090-2099), are also analyzed and presented, focusing on the future change in terms of mean precipitation, precipitation intensity and frequency and heavy precipitation on daily and hourly timescales in different seasons.</p>


2020 ◽  
Author(s):  
Tugba Ozturk ◽  
Dominic Matte ◽  
Jens Hesselbjerg Christensen

<p><span lang="EN-US">The occurrence of extreme weather events and climate extremes over Europe and the Mediterranean region are believed to be associated with changes and variability in the mid-latitude atmospheric circulation. CMIP5 models exhibits a substantial decrease in mid-latitude mean storm track activity for summer under climate change for a variety of scenarios. In this work, we aim to investigate future change in summer circulation and its implication for summer temperature and precipitation extremes over Europe particularly focusing on the Southeastern Mediterranean. EURO-CORDEX regional climate projections at 0.11° grid-mesh are used to analyze future climate projections addressing climate warming targets of 1°C, 2°C and 3°C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for the variables in concern in order to provide robust signals not to be dependent on climate sensitivity. Our focus in this study is on monthly mean geopotential height, winds at mid- and lower-troposphere as indicators of the simulated circulation changes.</span></p>


2021 ◽  
Author(s):  
Yuliya Rudakova ◽  
Igor Shkolnik ◽  
Elena Khlebnikova ◽  
Vladimir Kattsov

<p>The prospects of using the probabilistic regional climate projection technique for adaptation to climate change in the territory of Russia are considered. The analysis focuses on future changes in the climatic indicators of the thermal regime and humidification which play a significant role in the evaluation of the reliability of the functioning of construction and technical systems as well as transport and energy infrastructure.</p><p>The analysis is based on the output of the 50-member ensemble of high-resolution climate projections using an RCM developed at the Main Geophysical Observatory (MGO). The RCM grid has a horizontal resolution of 25 km across Russia. Modeling projections have been recently used to assess the impacts of regional climate change on hydropower facilities (Shkolnik et al., 2018).</p><p>Numerical experiments are carried out from different (random) initial conditions for the baseline 1990-1999 and future periods 2050-2059 and 2090-2099 using the IPCC RCP8.5 scenario (Kattsov et al., 2020). The boundary conditions on the ocean surface are derived from the output of the five CMIP5 models. For each ocean state trajectory, ten experiments from the different initial conditions are conducted. Lateral boundary conditions for the RCM ensemble are provided by MGO AGCM under an identical experimental setup.</p><p>To study the future impacts of the thermal regime, several universal indicators are used, particularly, the annual and seasonal extremes of temperature for a given averaging period as well as the characteristics of intra-annual periods with the temperature above/below the thresholds. The thresholds ​​are selected to meet the needs of construction, land transport, and the energy sector. Besides, the indicators of the precipitation regime are considered (seasonal maxima of daily amounts and characteristics of dry/wet periods).</p><p>Along with obtaining median ensemble estimates of changes in mean values, an analysis of future changes in the indicators in the probabilistic aspect is conducted. Using the temperature of the hottest 30-day period and the maximum duration of the dry period, the regional features of their projected changes are demonstrated accounting for the contribution of internal climatic variability. In agreement with observations, significant differences in the changes between the European part of Russia and certain regions of its Asian part are revealed.</p><p>The study is supported by the Russian Science Foundation (grant 16-17-00063).</p><p><strong>References</strong></p><p>Kattsov V., E. Khlebnikova, I. Shkolnik, and Yu. Rudakova: Probabilistic Regional Climate Projecting as a Basis for the Development of Adaptation Programs for the Economy of the Russian Federation. Russian Meteorology and Hydrology, 2020, Vol. 45, No. 5, pp. 330–338. Allerton Press, Inc., 2020.</p><p>Shkolnik, I., Pavlova, T., Efimov, S. et al. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario. Clim Dyn 50<strong>, </strong>215–230 (2018). https://doi.org/10.1007/s00382-017-3600</p>


2020 ◽  
Author(s):  
Prabal Das ◽  
Kironmala Chanda ◽  
Rajib Maity

<p><strong>Abstract</strong></p><p>This study aims to evaluate the future evolution of agricultural drought propensity across the Indian subcontinent through Drought Management Index (DMI), a probabilistic measure based on the concept of Reliability-Resilience-Vulnerability (RRV) of soil moisture series at a location/region (Chanda et al., 2014; Chanda and Maity, 2017). In this study, monthly gridded soil moisture products from the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework are used after suitable bias correction, if needed. In the realm of RRV analysis, the fall of soil moisture below a threshold (e.g., Permanent Wilting Point, PWP) is considered as the ‘failure state’. The joint distribution of resilience (the ability of the soil moisture system to recover from a failure state) and vulnerability (severity of the deficit in soil moisture during a failure state) of soil moisture series is modelled through copulas (Nelsen, 2006; Maity, 2018) to develop the DMI.  The results of this study help to assess the evolution of agricultural drought propensity, in terms of DMI, in the near (2011-2040), intermediate (2041-2070) and far future (2071-2099). The findings from multiple emission pathways, designated as Representative Concentration Pathways (RCPs), are compared against each other during the future period and also against the historical period. As an outcome of the study, specific regions across the Indian mainland are identified that need immediate attention for managing sustainable agricultural and allied activities in future.</p><p><strong>Keywords: </strong>Drought Management Index (DMI), soil moisture, future drought propensity, Reliability-Resilience-Vulnerability (RRV), CORDEX</p><p><strong> </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>References </strong></p><p>Chanda, K., Maity, R., Sharma, A., and Mehrotra, R. (2014). Spatiotemporal variation of long-term drought propensity through reliability-resilience-vulnerability based Drought Management Index, Water Resources Research, 50(10), 7662-7676.</p><p>Chanda, K., and Maity, R. (2017). Assessment of Trend in Global Drought Propensity in the Twenty-First Century Using Drought Management Index, Water Resources Management, 31(4), 1209-1225.</p><p>Maity, R. (2018). Statistical Methods in Hydrology and Hydroclimatology. Springer.</p><p>Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.</p>


2019 ◽  
Vol 55 (1) ◽  
pp. 130-155 ◽  
Author(s):  
Andre R. Erler ◽  
Steven K. Frey ◽  
Omar Khader ◽  
Marc d'Orgeville ◽  
Young‐Jin Park ◽  
...  

2017 ◽  
Vol 30 (20) ◽  
pp. 8081-8105 ◽  
Author(s):  
Andre R. Erler ◽  
W. Richard Peltier

Abstract The impact of anthropogenic climate change on water resources and flood and drought risk is of great interest for impact modeling and to inform adaptation strategies. Here an analysis of hydroclimatic changes in the Fraser and Athabasca River basins in western Canada is presented, based on an ensemble of climate projections, which have been dynamically downscaled to 10-km resolution using the Weather Research and Forecasting Model in two configurations. The GCM ensemble comprises four independent integrations of the Community Earth System Model under the representative concentration pathway 8.5. Basin-integrated changes in the seasonal cycle of hydroclimatic variables, and the variability of water supply and flood and drought risk, are considered. It is found that fall and winter precipitation generally increase by 20%–30% toward the end of the century, while changes in summer precipitation are smaller and associated with high model uncertainty. Furthermore, a reduction in snowfall and an increase in evapotranspiration are projected. However, projected impacts on water resources east and west of the Rocky Mountains are quite different: in basins closer to the coast (west of the Rocky Mountains) higher temperatures lead to a transition from predominantly solid to liquid precipitation and a significantly weaker spring freshet, followed by drier summers. In the lee of the Rocky Mountains the spring freshet remains largely unaffected and in summer the increase in evapotranspiration (ET) is compensated by increasing precipitation, so that water balance changes appear to be small. It is further found that a shift in runoff seasonality near the coast may lead to significantly increased flood risk in fall.


2015 ◽  
Vol 12 (6) ◽  
pp. 5789-5840 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990–2006 for ERA-Interim and 1960–2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a benchmark for comparison against the downscaled GCMs. On the basis that these simulations are among the highest resolution climate simulations available we examine how useful they are for understanding the changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows, with timing of maximum river flows broadly matching the available observations and the downscaled ERA-Interim simulation. Typically the RCM simulations over-estimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model although comparison with the downscaled ERA-Interim simulation is more mixed with only a couple of the gauges showing a bias compared with the downscaled GCM runs. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century; this trend is generally masked by the large annual variability of river flows for this region. The future seasonality of river flows does not change with the future maximum river flow rates still occuring during the ASM period, with a magnitude in some cases, greater than the present day natural variability. Increases in river flow during peak flow periods means additional water resource for irrigation, the largest usage of water in this region, but also has implications in terms of inundation risk. Low flow rates also increase which is likely to be important at times of the year when water is historically more scarce. However these projected increases in resource from rivers could be more than countered by changes in demand due to reductions in the quantity and quality of water available from groundwater, increases in domestic use due to a rising population or expansion of other industries such as hydro-electric power generation.


Sign in / Sign up

Export Citation Format

Share Document