scholarly journals Implications, conflicts, and reductions for Steiner trees

Author(s):  
Daniel Rehfeldt ◽  
Thorsten Koch

AbstractThe Steiner tree problem in graphs (SPG) is one of the most studied problems in combinatorial optimization. In the past 10 years, there have been significant advances concerning approximation and complexity of the SPG. However, the state of the art in (practical) exact solution of the SPG has remained largely unchallenged for almost 20 years. While the DIMACS Challenge 2014 and the PACE Challenge 2018 brought renewed interest into Steiner tree problems, even the best new SPG solvers cannot match the state of the art on the vast majority of benchmark instances. The following article seeks to advance exact SPG solution once again. The article is based on a combination of three concepts: Implications, conflicts, and reductions. As a result, various new SPG techniques are conceived. Notably, several of the resulting techniques are (provably) stronger than well-known methods from the literature that are used in exact SPG algorithms. Finally, by integrating the new methods into a branch-and-cut framework, we obtain an exact SPG solver that is not only competitive with, but even outperforms the current state of the art on an extensive collection of benchmark sets. Furthermore, we can solve several instances for the first time to optimality.

Author(s):  
Daniel Rehfeldt ◽  
Thorsten Koch

The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the classic Steiner tree problem in graphs, with a large number of practical applications. It attracted particular interest during the 11th DIMACS Challenge in 2014, and since then, several PCSTP solvers have been introduced in the literature. Although these new solvers further, and often drastically, improved on the results of the DIMACS Challenge, many PCSTP benchmark instances have remained unsolved. The following article describes further advances in the state of the art in exact PCSTP solving. It introduces new techniques and algorithms for PCSTP, involving various new transformations (or reductions) of PCSTP instances to equivalent problems, for example, to decrease the problem size or to obtain a better integer programming formulation. Several of the new techniques and algorithms provably dominate previous approaches. Further theoretical properties of the new components, such as their complexity, are discussed. Also, new complexity results for the exact solution of PCSTP and related problems are described, which form the base of the algorithm design. Finally, the new developments also translate into a strong computational performance: the resulting exact PCSTP solver outperforms all previous approaches, both in terms of runtime and solvability. In particular, it solves several formerly intractable benchmark instances from the 11th DIMACS Challenge to optimality. Moreover, several recently introduced large-scale instances with up to 10 million edges, previously considered to be too large for any exact approach, can now be solved to optimality in less than two hours. Summary of Contribution: The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the classic Steiner tree problem in graphs, with many practical applications. The article introduces and analyses new techniques and algorithms for PCSTP that ultimately aim for improved (practical) exact solution. The algorithmic developments are underpinned by results on theoretical aspects, such as fixed-parameter tractability of PCSTP. Computationally, we considerably push the limits of tractibility, being able to solve PCSTP instances with up to 10 million edges. The new solver, which also considerably outperforms the state of the art on smaller instances, will be made publicly available as part of the SCIP Optimization Suite.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shreeya Sriram ◽  
Shitij Avlani ◽  
Matthew P. Ward ◽  
Shreyas Sen

AbstractContinuous multi-channel monitoring of biopotential signals is vital in understanding the body as a whole, facilitating accurate models and predictions in neural research. The current state of the art in wireless technologies for untethered biopotential recordings rely on radiative electromagnetic (EM) fields. In such transmissions, only a small fraction of this energy is received since the EM fields are widely radiated resulting in lossy inefficient systems. Using the body as a communication medium (similar to a ’wire’) allows for the containment of the energy within the body, yielding order(s) of magnitude lower energy than radiative EM communication. In this work, we introduce Animal Body Communication (ABC), which utilizes the concept of using the body as a medium into the domain of untethered animal biopotential recording. This work, for the first time, develops the theory and models for animal body communication circuitry and channel loss. Using this theoretical model, a sub-inch$$^3$$ 3 [1″ × 1″ × 0.4″], custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation $$>99\%$$ > 99 % when compared to traditional wireless communication modalities, with a 50$$\times$$ × reduction in power consumption.


1995 ◽  
Vol 06 (03) ◽  
pp. 509-538 ◽  
Author(s):  
BERNHARD M. RIESS ◽  
ANDREAS A. SCHOENE

A new layout design system for multichip modules (MCMs) consisting of three components is described. It includes a k-way partitioning approach, an algorithm for pin assignment, and a placement package. For partitioning, we propose an analytical technique combined with a problem-specific multi-way ratio cut method. This method considers fixed module-level pad positions and assigns the cells to regularly arranged chips on the MCM substrate. In the subsequent pin assignment step the chip-level pads resulting from cut nets are positioned on the chip borders. Pin assignment is performed by an efficient algorithm, which profits from the cell coordinates generated by the analytical technique. Global and final placement for each chip is computed by the state-of-the-art placement tools GORDIANL and DOMINO. For the first time, results for MCM layout designs of benchmark circuits with up to 100,000 cells are presented. They show a small number of required chip-level pads, which is the most restricted resource in MCM design, and short total wire lengths.


Author(s):  
Yannik Rist ◽  
Michael A. Forbes

This paper proposes a new mixed integer programming formulation and branch and cut (BC) algorithm to solve the dial-a-ride problem (DARP). The DARP is a route-planning problem where several vehicles must serve a set of customers, each of which has a pickup and delivery location, and includes time window and ride time constraints. We develop “restricted fragments,” which are select segments of routes that can represent any DARP route. We show how to enumerate these restricted fragments and prove results on domination between them. The formulation we propose is solved with a BC algorithm, which includes new valid inequalities specific to our restricted fragment formulation. The algorithm is benchmarked on existing and new instances, solving nine existing instances to optimality for the first time. In comparison with current state-of-the-art methods, run times are reduced between one and two orders of magnitude on large instances.


2020 ◽  
Vol 10 (8) ◽  
pp. 2955 ◽  
Author(s):  
Styliani Papatzani ◽  
Kevin Paine

In an effort to produce cost-effective and environmentally friendly cementitious binders. mainly ternary (Portland cement + limestone + pozzolanas) formulations have been investigated so far. Various proportions of constituents have been suggested, all, however, employing typical Portland cement (PC) substitution rates, as prescribed by the current codes. With the current paper a step by step methodology on developing low carbon footprint binary, ternary and quaternary cementitious binders is presented (PC replacement up to 57%). Best performing binary (60% PC and 40% LS (limestone)) and ternary formulations (60% PC, 20% LS, 20% FA (fly ash) or 43% PC, 20% LS 37% FA) were selected on the grounds of sustainability and strength development and were further optimized with the addition of silica fume. For the first time a protocol for successfully selecting and testing binders was discussed and the combined effect of highly pozzolanic constituents in low PC content formulations was assessed and a number of successful matrices were recommended. The present paper enriched the current state of the art in composite low carbon footprint cementitious binders and can serve as a basis for further enhancements by other researchers in the field.


Author(s):  
Esteban Real ◽  
Alok Aggarwal ◽  
Yanping Huang ◽  
Quoc V. Le

The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier— AmoebaNet-A—that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-theart 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.


2012 ◽  
Vol 1433 ◽  
Author(s):  
Dirk Lewke ◽  
Matthias Koitzsch ◽  
Martin Schellenberger ◽  
Lothar Pfitzner ◽  
Heiner Ryssel ◽  
...  

ABSTRACTThis paper presents Thermal Laser Separation (TLS) as a novel dicing technology for silicon carbide (SiC) wafers. Results of this work will play an important role in improving the SiC dicing process regarding throughput and edge quality. TLS process parameters were developed for separating 4H-SiC wafers. Separated SiC dies were analyzed and compared with results produced with current state of the art blade dicing technology. For the first time, fully processed 100 mm 4H-SiC wafers with a thickness of 450 μm, including epi-layer and back side metal layers, could be separated with feed rates up to 200 mm/s. Besides the vastly improved dicing speed, the TLS separation process results in two important features of the separated SiC devices: First, edges are free of chipping and therefore of higher quality than the edges produced by blade dicing. Second, the TLS process is kerf free, which allows for reducing the necessary dicing street width and hence increasing the number of devices per wafer.


Author(s):  
Moira MacNeil ◽  
Merve Bodur

Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in [Formula: see text] such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called discretization assumptions reduce the search space of the realization to a finite discrete one, which can be explored via the branch-and-prune (BP) algorithm. Given a discretization vertex order in G, the BP algorithm constructs a binary tree where the nodes at a layer provide all possible coordinates of the vertex corresponding to that layer. The focus of this paper is on finding optimal BP trees for a class of discretizable DGPs. More specifically, we aim to find a discretization vertex order in G that yields a BP tree with the least number of branches. We propose an integer programming formulation and three constraint programming formulations that all significantly outperform the state-of-the-art cutting-plane algorithm for this problem. Moreover, motivated by the difficulty in solving instances with a large and low-density input graph, we develop two hybrid decomposition algorithms, strengthened by a set of valid inequalities, which further improve the solvability of the problem. Summary of Contribution: We present a new model to solve a combinatorial optimization problem on graphs, MIN DOUBLE, which comes from the highly active area of distance geometry and has applications in a wide variety of fields. We use integer programming (IP) and present the first constraint programming (CP) models and hybrid decomposition methods, implemented as a branch-and-cut procedure, for MIN DOUBLE. Through an extensive computational study, we show that our approaches advance the state of the art for MIN DOUBLE. We accomplish this by not only combining generic techniques from IP and CP but also exploring the structure of the problem in developing valid inequalities and variable fixing rules. Our methods significantly improve the solvability of MIN DOUBLE, which we believe can also provide insights for tackling other problem classes and applications.


2021 ◽  
Author(s):  
Julian D. Richards ◽  
Ulf Jakobsson ◽  
David Novák ◽  
Benjamin Štular ◽  
Holly Wright

The articles in this special issue demonstrate significant differences in digital archiving capacity in different countries. In part these reflect differences in the history of archaeology in each country, its relationship to the state, whether it is centralised or decentralised, state-led or commercially driven. They also reflect some of the different attitudes to archaeology across the world, most recently explored in a survey conducted under the auspices of the NEARCH project. They reflect a snapshot in time, but our aim is to record the current state-of-the-art in each country, to inform knowledge, stimulate discussion, and to provoke change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Hazubski ◽  
Harald Hoppe ◽  
Andreas Otte

Abstract In the field of neuroprosthetics, the current state-of-the-art method involves controlling the prosthesis with electromyography (EMG) or electrooculography/electroencephalography (EOG/EEG). However, these systems are both expensive and time consuming to calibrate, susceptible to interference, and require a lengthy learning phase by the patient. Therefore, it is an open challenge to design more robust systems that are suitable for everyday use and meet the needs of patients. In this paper, we present a new concept of complete visual control for a prosthesis, an exoskeleton or another end effector using augmented reality (AR) glasses presented for the first time in a proof-of-concept study. By using AR glasses equipped with a monocular camera, a marker attached to the prosthesis is tracked. Minimal relative movements of the head with respect to the prosthesis are registered by tracking and used for control. Two possible control mechanisms including visual feedback are presented and implemented for both a motorized hand orthosis and a motorized hand prosthesis. Since the grasping process is mainly controlled by vision, the proposed approach appears to be natural and intuitive.


Sign in / Sign up

Export Citation Format

Share Document