Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens

2011 ◽  
Vol 38 (9) ◽  
pp. 1493-1498 ◽  
Author(s):  
Clarissa S. Capel ◽  
Ana C. D. de Souza ◽  
Tatiane C. de Carvalho ◽  
João P. B. de Sousa ◽  
Sérgio R. Ambrósio ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2021 ◽  
Vol 15 (10) ◽  
pp. 1436-1442
Author(s):  
Serdar Demir ◽  
Gul Keskin ◽  
Nese Akal ◽  
Yasemin Zer

Introduction: Because of the adverse effects on human health of some antimicrobial ingredients in traditional toothpaste, consumers are increasingly turning to toothpastes with natural ingredients. This study evaluates the antimicrobial effect of toothpastes containing different natural active agents against three oral pathogens: Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis. Methodology: This study tested one traditional toothpaste and seven different natural toothpastes containing theobromine, aloe vera, miswak, propolis, chitosan, enzymes and probiotics. The agar-well diffusion method was used to test the antimicrobial effect. Inhibition zones formed around toothpastes after 24 hours of incubation were measured and the data collected were statistically analyzed. Results: Toothpastes containing theobromine and chitosan and the traditional toothpaste showed antimicrobial efficacy for all tested bacteria. Toothpastes containing aloe vera, miswak, and propolis were only effective on S. mutans, while toothpastes containing probiotics and enzymes did not show any antimicrobial effect on the bacteria. Among toothpastes with natural ingredients, the theobromine-containing toothpaste showed the highest efficacy on S. mutans, while the aloe vera- and propolis-containing toothpastes had the lowest efficacy (p < 0.05). Conclusions: Theobromine- and chitosan-containing toothpastes, which showed antimicrobial activity against all bacteria, can be recommended as alternatives to traditional toothpastes.


2015 ◽  
Vol 30 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Kyoung-Hee Choi ◽  
Sejeong Kim ◽  
Yohan Yoon

2017 ◽  
Vol 20 (1) ◽  
pp. 41-46
Author(s):  
Dewi Nurul Mustaqimah ◽  
Josh Erry HW

The increasing prevalence of dental caries is still as a major world health problem. Caries is the direct result of acid production by cariogenic oral pathogens, especially Streptococcus mutans. New and better antimicrobial agents active against cariogenic bacteria with minimal side effects on the oral tissues are much needed, especially natural agents derived directly from plants. Phytochemical studies have shown that the extracts from various parts of mangosteen or Garciniamangostana Linn tree contain varieties of secondary metabolites such as prenylated and oxygenated xanthones, many of which have been found in vitro to have antimicrobial properties against oral pathogens. Several studies which examined the eficacy of herbal for human health have shown that xanthones from mangosteen have remarkable biological activities such as antioxidant, antimicrobial, anticancer etc, and had no cytotoxic effects on human gingival fibroblasts. Their results showed that among these xanthone derivatives obtain from pericarp extract of mangosteen, α-mangostin has the most potent antimicrobial activity against cariogenic Streptococcus mutans. It can be concluded that the strong antimicrobial activity of the pericarp extract of mangosteen is a good drug of choice that might be helpful in preventing the dental caries.


Author(s):  
Tugba Serin Kalay ◽  
Yakup Kara ◽  
Sengul alpay Karaoglu ◽  
Sevgi Kolaylı

Background: Antimicrobial agents are recommended for disinfection of the cavity following mechanical dental caries removal prior to application of restorative material. There is limited information about stabilized chlorine dioxide (ClO2) as a cavity disinfectant. Objective: The objective of this study is to determine the antimicrobial activity and effect on dentin bond strength of ClO2 compared to chlorhexidine digluconate (CHX), sodium hypochlorite (NaOCl) and ethanolic propolis extract (EPE). Methods: Antimicrobial activities of agents against oral pathogens (Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus casei, Candida albicans, and Saccharomyces cerevisiae) and analyses of EPE were examined. Seventy-five mandibular third molars were sectioned, prepared and divided into five subgroups (n=15/group). Cavity disinfectants (2% CHX, 2.5% NaOCl, 30% EPE, 0.3% ClO2) were applied to etched dentin prior to adhesive and composite build-up. Shear bond strength (SBS) was evaluated with a universal testing machine at a crosshead speed of 0.5 mm/min. The SBS data were analyzed with one-way analysis of variance (ANOVA) and Tukey’s post-hoc test (p <0.05). The failure modes were evaluated with a stereomicroscope. Results: It was determined that the compared disinfectants were showed different inhibition zone values against oral pathogens. ClO2 exhibited the highest antimicrobial activity, followed by CHX, NaOCI and EPE, respectively. No statistically significant difference was observed in the SBS values between the disinfectant treated groups and control group. The failure modes were predominantly mixed. Conclusion: The use of 0.3% stabilized ClO2 as a cavity disinfectant agent exhibited high antimicrobial activity against oral pathogens and no adverse effects on SBS to etched dentin.


Sign in / Sign up

Export Citation Format

Share Document