scholarly journals Nano-structured dynamic Schiff base cues as robust self-healing polymers for biomedical and tissue engineering applications: a review

Author(s):  
Umer Shahzad Malik ◽  
Muhammad Bilal Khan Niazi ◽  
Zaib Jahan ◽  
Mazhar Iqbal Zafar ◽  
Dai-Viet N. Vo ◽  
...  

AbstractPolymer materials are vulnerable to damages, failures, and degradations, making them economically unreliable. Self-healing polymers, on the other hand, are multifunctional materials with superior properties of autonomic recovery from physical damages. These materials are suitable for biomedical and tissue engineering in terms of cost and durability. Schiff base linkages-based polymer materials are one of the robust techniques owing to their simple self-healing mechanism. These are dynamic reversible covalent bonds, easy to fabricate at mild conditions, and can self-reintegrate after network disruption at physiological conditions making them distinguished. Here we review self-healing polymer materials based on Schiff base bonds. We discuss the Schiff base bond formation between polymeric networks, which explains the self-healing phenomenon. These bonds have induced 100% recovery in optimal cases.

Author(s):  
Natascha Kuhl ◽  
Stefan Bode ◽  
Martin D. Hager ◽  
Ulrich S. Schubert

MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 759-765 ◽  
Author(s):  
Kyle A. Williams ◽  
Daniel R. Dreyer ◽  
Christopher W. Bielawski

AbstractOver the past ten years, a broad range of self-healing materials, systems that can detect when they have been damaged and heal themselves either spontaneously or with the aid of a stimulus, has emerged. Although many unique compositions and components are used to create these materials, they all employ basic chemical reactions to facilitate repair processes. Kinetically controlled ring-opening reactions and reversible metal–ligand interactions have proven useful in autonomic self-healing materials, which require no stimulus (other than the formation of damage) for operation. In contrast, nonautonomic self-healing materials, which require some type of externally applied stimulus (such as heat or light) to enable healing functions, have capitalized on chemistries that utilize either reversible covalent bonds or various types of noncovalent interactions. This review describes the underlying chemistries used in state-of-the-art self-healing materials, as well as those currently in development.


2018 ◽  
Vol 31 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Xiaofei Wang ◽  
Kaifeng Zhao ◽  
Xiaowen Huang ◽  
Xiaoyue Ma ◽  
Yanyan Wei

Over time, automotive coating is bound to be damaged; therefore, it is necessary to give the coating a self-healing ability to make its performance even better. First, furfuryl glycidyl ether (FGE) was synthesized by epichlorohydrin and furfuryl alcohol. Then, furanyl-terminated resin FGE-T5000 was synthesized by polyether amine T5000 and FGE. Finally, 4,4′-diphenylmethane bismaleimide (BDM) was added to FGE-T5000 as a cross-linking agent to form a resin named FGE-T5000-BDM which has Diels–Alder (DA) bonds. The products were characterized by Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, differential scanning calorimeter, dynamic mechanical analysis, thermogravimetric analysis, optical microscope, tensile tests, and other tests. The results showed that FGE-T5000-BDM demonstrated thermally reversible self-healing property from 50°C to 150°C, and that the best temperature of the DA reaction was 80°C. The gel content of FGE-T5000-BDM was 98%. Also, the glass transition temperature and the initial temperature of the Retro-DA (r-DA) reaction were −58°C and 88°C, respectively. Moreover, the self-healing efficiency of FGE-T5000-BDM was up to 88% after staying at 80°C for 12 h. The innovation shown in this article was that the reversible covalent bonds (DA) were combined with the polyether amines, which produced the characteristics of self-healing. Its unique self-healing properties are useful in some areas, such as automobile coatings and other materials.


2019 ◽  
Vol 10 (18) ◽  
pp. 2305-2315 ◽  
Author(s):  
Xiacong Zhang ◽  
Lin Cheng ◽  
Letian Feng ◽  
Yu Peng ◽  
Zhimin Zhou ◽  
...  

A combination of dendronization and Schiff-base chemistry endows injectable chitosan hydrogels with thermoresponsiveness, self-healing abilities and enhanced mechanical properties under physiological conditions.


2017 ◽  
Vol 8 (7) ◽  
pp. 1263-1271 ◽  
Author(s):  
Ruixue Chang ◽  
Heng An ◽  
Xu Li ◽  
Ruyi Zhou ◽  
Jianglei Qin ◽  
...  

P(NIPAM-co-FPA) contains an aldehyde group and a phenolic ester moiety is synthesized. The aldehyde group can form reversible covalent bonds with hydrazide to endow the polymer gels with self-healing properties. The self-healable polymer gel can be degraded in Na2CO3 solution based on cleavage of phenolic ester bond.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xiaowen Huang ◽  
Xiaofei Wang ◽  
Chuanying Shi ◽  
Yang Liu ◽  
Yanyan Wei

AbstractFirst of all, we will provide a brief background on the self-healing hydrogels we produced which are suitable for the complex environment of nature. In this paper, disulfide bonds and acylhydrazone bonds can be combined in SH-WPU and hydrogen bonds existed in PAMAM. And the hydrogel can achieve self-healing under acid, alkaline, neutral or light environment.Self-healing for 1 h, 24 h and 48 h, the self-healing efficiency is 31.58%, 49.84% and 87.35% respectively. This effect achieved the desired effect and the repair effect is more obvious than previous research results. The hydrogels have potential applications in the field of biomaterials.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4381
Author(s):  
Seohyun Baek ◽  
Juhyen Lee ◽  
Hyunwoo Kim ◽  
Inhwan Cha ◽  
Changsik Song

Due to growing environmental issues, research on carbon dioxide (CO2) use is widely conducted and efforts are being made to produce useful materials from biomass-derived resources. However, polymer materials developed by a combined strategy (i.e., both CO2-immobilized and biomass-derived) are rare. In this study, we synthesized biomass-derived poly(carbonate-co-urethane) (PCU) networks using CO2-immobilized furan carbonate diols (FCDs) via an ecofriendly method. The synthesis of FCDs was performed by directly introducing CO2 into a biomass-derived 2,5-bis(hydroxymethyl)furan. Using mechanochemical synthesis (ball-milling), the PCU networks were effortlessly prepared from FCDs, erythritol, and diisocyanate, which were then hot-pressed into films. The thermal and thermomechanical properties of the PCU networks were thoroughly characterized by thermogravimetric analysis, differential scanning calorimetry, dynamic (thermal) mechanical analysis, and using a rheometer. The self-healing and recyclable properties of the PCU films were successfully demonstrated using dynamic covalent bonds. Interestingly, transcarbamoylation (urethane exchange) occurred preferentially as opposed to transcarbonation (carbonate exchange). We believe our approach presents an efficient means for producing sustainable polyurethane copolymers using biomass-derived and CO2-immobilized diols.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2261
Author(s):  
Sheila Maiz-Fernández ◽  
Leyre Pérez-Álvarez ◽  
Leire Ruiz-Rubio ◽  
Jose Luis Vilas-Vilela ◽  
Senentxu Lanceros-Mendez

In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.


2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


Sign in / Sign up

Export Citation Format

Share Document