scholarly journals Monitoring saline intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2 satellite mission

Author(s):  
Toru Sakai ◽  
Keisuke Omori ◽  
Aung Naing Oo ◽  
Yan Naung Zaw

AbstractSummer rice cannot be grown near the coast of the Ayeyarwady Delta, Myanmar, because of the high salinity in river water during the dry season. This means that saline intrusion should be monitored to manage the irrigated rice-growing area. The aim of this study therefore is to develop a model to estimate the salinity of river water using satellite imagery. The imagery of Sentinel-2 was suitable for monitoring saline intrusion because of their high spatial (10-m) and temporal (10-day) resolutions. We found that the reflectance of the visible bands was correlated with electrical conductivity, which was influenced by the concentration and composition of dissolved salts. When the river water mixed with the salt water from the sea, suspended particles tended to flocculate and settle, as a result, less turbid water was more saline. The best-fitting model was obtained with the green band (coefficient of determination R2 of 0.776, root mean square error of 4.896 dSm−1, and mean absolute error of 3.340 dS m−1). The saline intrusion showed considerable spatial and temporal variability during the dry season. The salinity intrusion extended approximately 80 km inland at the end of the dry season in March in the Pathein River. The 1 ppt salt concentration line in March marked the boundary between cultivated and non-cultivated areas of paddy field, which indicates that cultivable areas were strongly affected by saline intrusion. The results show that more frequent and higher resolution monitoring than before of the Sentinel-2 can support effective water resource management.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5763 ◽  
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Indrajit Chowdhuri ◽  
Zhaleh Siabi ◽  
...  

Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.


Author(s):  
Zhai Mingyu ◽  
Wang Sutong ◽  
Wang Yanzhang ◽  
Wang Dujuan

AbstractData-driven techniques improve the quality of talent training comprehensively for university by discovering potential academic problems and proposing solutions. We propose an interpretable prediction method for university student academic crisis warning, which consists of K-prototype-based student portrait construction and Catboost–SHAP-based academic achievement prediction. The academic crisis warning experiment is carried out on desensitization multi-source student data of a university. The experimental results show that the proposed method has significant advantages over common machine learning algorithms. In terms of achievement prediction, mean square error (MSE) reaches 24.976, mean absolute error (MAE) reaches 3.551, coefficient of determination ($$R^{2}$$ R 2 ) reaches 80.3%. The student portrait and Catboost–SHAP method are used for visual analysis of the academic achievement factors, which provide intuitive decision support and guidance assistance for education administrators.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1511
Author(s):  
Jung-Ryel Choi ◽  
Il-Moon Chung ◽  
Se-Jin Jeung ◽  
Kyung-Su Choo ◽  
Cheong-Hyeon Oh ◽  
...  

Climate change significantly affects water supply availability due to changes in the magnitude and seasonality of runoff and severe drought events. In the case of Korea, despite high water supply ratio, more populations have continued to suffer from restricted regional water supplies. Though Korea enacted the Long-Term Comprehensive Water Resources Plan, a field survey revealed that the regional government organizations limitedly utilized their drought-related data. These limitations present a need for a system that provides a more intuitive drought review, enabling a more prompt response. Thus, this study presents a rating curve for the available number of water intake days per flow, and reviews and calibrates the Soil and Water Assessment Tool (SWAT) model mediators, and found that the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) from 2007 to 2011 were at 0.92, 0.84, and 7.2%, respectively, which were “very good” levels. The flow recession curve was proposed after calculating the daily long-term flow and extracted the flow recession trends during days without precipitation. In addition, the SWAT model’s flow data enables the quantitative evaluations of the number of available water intake days without precipitation because of the high hit rate when comparing the available number of water intake days with the limited water supply period near the study watershed. Thus, this study can improve drought response and water resource management plans.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Mehdi Aalijahan ◽  
Azra Khosravichenar

The spatial distribution of precipitation is one of the most important climatic variables used in geographic and environmental studies. However, when there is a lack of full coverage of meteorological stations, precipitation estimations are necessary to interpolate precipitation for larger areas. The purpose of this research was to find the best interpolation method for precipitation mapping in the partly densely populated Khorasan Razavi province of northeastern Iran. To achieve this, we compared five methods by applying average precipitation data from 97 rain gauge stations in that province for a period of 20 years (1994–2014): Inverse Distance Weighting, Radial Basis Functions (Completely Regularized Spline, Spline with Tension, Multiquadric, Inverse Multiquadric, Thin Plate Spline), Kriging (Simple, Ordinary, Universal), Co-Kriging (Simple, Ordinary, Universal) with an auxiliary elevation parameter, and non-linear Regression. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R2) were used to determine the best-performing method of precipitation interpolation. Our study shows that Ordinary Co-Kriging with an auxiliary elevation parameter was the best method for determining the distribution of annual precipitation for this region, showing the highest coefficient of determination of 0.46% between estimated and observed values. Therefore, the application of this method of precipitation mapping would form a mandatory base for regional planning and policy making in the arid to semi-arid Khorasan Razavi province during the future.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Nuraddeen Mukhtar Nasidi ◽  
Aimrun. Wayayok ◽  
Ahmad Fikri Abdullah ◽  
Muhamad Saufi Mohd Kassim

AbstractPrecipitation is sensitive to increasing greenhouse gas emission which has a significant impact on environmental sustainability. Rapid change of climate variables is often result into large variation in rainfall characteristics which trigger other forms of hazards such as floods, erosion, and landslides. This study employed multi-model ensembled general circulation models (GCMs) approach to project precipitation into 2050s and 2080s periods under four RCPs emission scenarios. Spatial analysis was performed in ArcGIS10.5 environment using Inverse Distance Weighted (IDW) interpolation and Arc-Hydro extension. The model validation indicated by coefficient of determination, Nash–Sutcliffe efficiency, percent bias, root mean square error, standard error, and mean absolute error are 0.73, 0.27, 20.95, 1.25, 0.37 and 0.15, respectively. The results revealed that the Cameron Highlands will experience higher mean daily precipitations between 5.4 mm in 2050s and 9.6 mm in 2080s under RCP8.5 scenario, respectively. Analysis of precipitation concentration index (PCI) revealed that 75% of the watershed has PCI greater than 20 units which indicates substantial variability of the precipitation. Similarly, there is varied spatial distribution patterns of projected precipitation over the study watershed with the largest annual values ranged between 2900 and 3000 mm, covering 71% of the total area in 2080s under RCP8.5 scenario. Owing to this variability in rainfall magnitudes, appropriate measures for environmental protection are essential and to be strategized to address more vulnerable areas.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2019 ◽  
Vol 11 (10) ◽  
pp. 154
Author(s):  
Vinicius de Souza Oliveira ◽  
Cássio Francisco Moreira de Carvalho ◽  
Juliany Morosini França ◽  
Flávia Barreto Pinto ◽  
Karina Tiemi Hassuda dos Santos ◽  
...  

The objective of the present study was to test and establish mathematical models to estimate the leaf area of Garcinia brasiliensis Mart. through linear dimensions of the length, width and product of both measurements. In this way, 500 leaves of trees with age between 4 and 6 years were collected from all the cardinal points of the plant in the municipality of S&atilde;o Mateus, North of the State of Esp&iacute;rito Santo, Brazil. The length (L) along the main midrib, the maximum width (W), the product of the length with the width (LW) and the observed leaf area (OLA) were obtained for all leaves. From these measurements were adjusted linear equations of first degree, quadratic and power, in which OLA was used as dependent variable as function of L, W and LW as independent variable. For the validation, the values of L, W and LW of 100 random leaves were substituted in the equations generated in the modeling, thus obtaining the estimated leaf area (ELA). The values of the means of ELA and OLA were tested by Student&rsquo;s t test 5% of probability. The mean absolute error (MAE), root mean square error (RMSE) and Willmott&rsquo;s index d for all proposed models were also determined. The choice of the best model was based on the non significant values in the comparison of the means of ELA and OLA, values of MAE and RMSE closer to zero and value of the index d and coefficient of determination (R2) close to unity. The equation that best estimates leaf area of Garcinia brasiliensis Mart. in a way non-destructive is the power model represented by por ELA = 0.7470(LW)0.9842 and R2 = 0.9949.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document