scholarly journals The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis

Angiogenesis ◽  
2021 ◽  
Author(s):  
Lanette Kempers ◽  
Yuki Wakayama ◽  
Ivo van der Bijl ◽  
Charita Furumaya ◽  
Iris M. De Cuyper ◽  
...  

AbstractSprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic ‘tip’ and ‘stalk’ cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yasuhiro Yokota ◽  
Hiroyuki Nakajima ◽  
Yuki Wakayama ◽  
Akira Muto ◽  
Koichi Kawakami ◽  
...  

Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 926
Author(s):  
Marchien G. Dallinga ◽  
Yasmin I. Habani ◽  
Alinda W. M. Schimmel ◽  
Geesje M. Dallinga-Thie ◽  
Cornelis J. F. van Noorden ◽  
...  

During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA–VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.


2020 ◽  
Author(s):  
René L. Vidal ◽  
Denisse Sepulveda ◽  
Paulina Troncoso-Escudero ◽  
Paula Garcia-Huerta ◽  
Constanza Gonzalez ◽  
...  

AbstractAlteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR-target genes. Here, we designed an ATF6f-XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has stronger an effect in reducing the abnormal aggregation of mutant huntingtin and alpha-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson’s and Huntington’s disease. These results support the concept where directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


2008 ◽  
Vol 34 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Angela M. Verdoni ◽  
Natsuyo Aoyama ◽  
Akihiro Ikeda ◽  
Sakae Ikeda

Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes. In addition, recent studies have provided evidence that actin dynamics participate in the control of gene expression. A spontaneous mouse mutant, corneal disease 1 ( corn1), is deficient for a regulator of actin dynamics, destrin (DSTN, also known as ADF), which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn corn1 mice exhibit an actin dynamics defect in the corneal epithelial cells, offering an in vivo model to investigate cellular mechanisms affected by the Dstn mutation and resultant actin dynamics abnormalities. To examine the effect of the Dstn corn1 mutation on the gene expression profile, we performed a microarray analysis using the cornea from Dstn corn1 and wild-type mice. A dramatic alteration of the gene expression profile was observed in the Dstn corn1 cornea, with 1,226 annotated genes differentially expressed. Functional annotation of these genes revealed that the most significantly enriched functional categories are associated with actin and/or cytoskeleton. Among genes that belong to these categories, a considerable number of serum response factor target genes were found, indicating the possible existence of an actin-SRF pathway of transcriptional regulation in vivo. A comparative study using an allelic mutant strain with milder corneal phenotypes suggested that the level of filamentous actin may correlate with the level of gene expression changes. Our study shows that Dstn mutations and resultant actin dynamics abnormalities have a strong impact on the gene expression profile in vivo.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Claudia Noack ◽  
Maria P Zafiriou ◽  
Anke Renger ◽  
Hans J Schaeffer ◽  
Martin W Bergmann ◽  
...  

Wnt/β-catenin signaling controls adult heart remodeling partly by regulating cardiac progenitor cell (CPC) differentiation. We now identified and characterized a novel cardiac interaction of the transcription factor Krueppel-like factor 15 (KLF15) with the Wnt/β-catenin signaling on adult CPCs. In vitro mutation, reporter gene assays and co-localization studies revealed that KLF15 requires two distinct domains for nuclear localization and for repression of β-catenin-mediated transcription. KLF15 had no effect on β-catenin stability or cellular localization, but interacted with its co-factor TCF4, which is required for activation of β-catenin target gene expression. Moreover, increased TCF4 ubiquitination was induced by KLF15. In line with this finding we found KLF15 to interact with the Nemo-like kinase, which was shown to phosphorylate and target TCF4 for degradation. In vivo analyses of adult Klf15 functional knock-out (KO) vs. wild-type (WT) mice showed a cardiac β-catenin-mediated transcriptional activation and reduced TCF4 degradation along with cardiac dysfunction assessed by echocardiography (n=10). FACS analysis of the CPC enriched-population of KO vs. WT mice revealed a significant reduction of cardiogenic-committed precursors identified as Sca1+/αMHC+ (0.8±0.2% vs. 1.8±0.1%) and Tbx5+ (3.5±0.3% vs. 5.2±0.5%). In contrast, endothelial Sca1+/CD31+ cells were significantly higher in KO mice (11.3±0.4% vs. 8.6±0.4%; n≥9). In addition, Sca1+ isolated cells of Klf15 KO showed increased RNA expression of endothelial markers von Willebrand Factor, CD105, and Flk1 along with upregulation of β-catenin target genes. CPCs co-cultured on adult fibroblasts resulted in increased endothelial Flk1 cells and reduction of αMHC and Hand1 cardiogenic cells in KO vs. WT CPCs (n=9). Treating these co-cultures with Quercetin, an inhibitor of nuclear β-catenin, resulted in partial rescue of the observed phenotype. This study uncovers a critical role of KLF15 for the maintenance of cardiac tissue homeostasis. Via inhibition of β-catenin transcription, KLF15 controls cardiomyogenic cell fate similar to embryonic cardiogenesis. This knowledge may provide a tool for activation of endogenous CPCs in the postnatal heart.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2017 ◽  
Vol 29 (1) ◽  
pp. 173
Author(s):  
Z. Jiang ◽  
J. Sun ◽  
S. Marjani ◽  
H. Dong ◽  
X. Zheng ◽  
...  

Appropriate reference genes for accurate normalization in RT-PCR are essential for the study of gene expression. Ideal reference genes should not only have stable expression across stages of embryo development, but also be expressed at comparable levels to the target genes. Using RNA-seq data from in vivo-produced bovine oocytes and embryos from the 2-cell to blastocyst stage (Jiang et al., 2014 BMC Genomics 15, 756), we tried to establish a catalogue of all reference genes for RT-PCR analysis. One-way ANOVA generated 4055 genes that did not differ across stages. To reduce this list, we used the entire RNA-seq data set and first removed genes with a FPKM (fragments per kilobase of transcript per million mapped reads) of <1, and then rescaled each gene’s expression values within a range of 0 to 1. We subsequently calculated the expression variance for each gene across all stages. By assuming that the calculated variances follow a Gaussian distribution and that the majority of the genes do not have a stable expression level, a gene was classified as a reference if its variance significantly deviated (P < 0.05) from these assumptions. We identified 346 potential reference genes, all of which were among the candidates from the ANOVA analysis. We arbitrarily assigned genes in this list to high (FPKM ≥ 100), medium (10 < FPKM < 100), and low expression levels (FPKM ≤ 10), and 37, 154, and 155 genes, respectively, fell into these groups. Surprisingly, none of the commonly used reference genes, such as GAPDH, PPIA, ACTB, PRL15, GUSB, and H3F2A, were identified as being stably expressed across in vivo development. This is consistent with findings of prior RT-PCR studies (Robert et al. 2002 Biol. Reprod. 67, 1465–1472; Ross et al. 2010 Cell Reprogram. 12, 709–717). The following gene ontology terms were significantly enriched for the 346 genes: cell cycle, translation, transport, chromatin, cell division, and metabolic process, indicating that the early embryos maintained constant levels of genes involved in fundamental biological functions. Finally, we performed RT-PCR to validate the RNA-seq results using different bovine in vivo-derived oocytes and embryos (n = 3/stage). We successfully validated 10 selected genes, including those in the high (CS, PGD, and ACTR3), medium (CCT5, MRPL47, COG2, CRT9, and HELLS), and low expression groups (CDC23 and TTF1). In conclusion, we recommend the use of reference genes that are expressed at comparable levels to target genes. This study offers a useful resource to aid in the appropriate selection of reference genes, which will improve the accuracy of quantitative gene expression analyses across bovine embryo pre-implantation development.


2020 ◽  
Vol 21 (13) ◽  
pp. 4804
Author(s):  
Vincent van Duinen ◽  
Wendy Stam ◽  
Eva Mulder ◽  
Farbod Famili ◽  
Arie Reijerkerk ◽  
...  

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


Sign in / Sign up

Export Citation Format

Share Document