Abstract 356: Krueppel-Like Factor 15 Regulates Wnt/β-Catenin Transcription and Controls Cardiac Progenitor Cell Fate in the Postnatal Heart

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Claudia Noack ◽  
Maria P Zafiriou ◽  
Anke Renger ◽  
Hans J Schaeffer ◽  
Martin W Bergmann ◽  
...  

Wnt/β-catenin signaling controls adult heart remodeling partly by regulating cardiac progenitor cell (CPC) differentiation. We now identified and characterized a novel cardiac interaction of the transcription factor Krueppel-like factor 15 (KLF15) with the Wnt/β-catenin signaling on adult CPCs. In vitro mutation, reporter gene assays and co-localization studies revealed that KLF15 requires two distinct domains for nuclear localization and for repression of β-catenin-mediated transcription. KLF15 had no effect on β-catenin stability or cellular localization, but interacted with its co-factor TCF4, which is required for activation of β-catenin target gene expression. Moreover, increased TCF4 ubiquitination was induced by KLF15. In line with this finding we found KLF15 to interact with the Nemo-like kinase, which was shown to phosphorylate and target TCF4 for degradation. In vivo analyses of adult Klf15 functional knock-out (KO) vs. wild-type (WT) mice showed a cardiac β-catenin-mediated transcriptional activation and reduced TCF4 degradation along with cardiac dysfunction assessed by echocardiography (n=10). FACS analysis of the CPC enriched-population of KO vs. WT mice revealed a significant reduction of cardiogenic-committed precursors identified as Sca1+/αMHC+ (0.8±0.2% vs. 1.8±0.1%) and Tbx5+ (3.5±0.3% vs. 5.2±0.5%). In contrast, endothelial Sca1+/CD31+ cells were significantly higher in KO mice (11.3±0.4% vs. 8.6±0.4%; n≥9). In addition, Sca1+ isolated cells of Klf15 KO showed increased RNA expression of endothelial markers von Willebrand Factor, CD105, and Flk1 along with upregulation of β-catenin target genes. CPCs co-cultured on adult fibroblasts resulted in increased endothelial Flk1 cells and reduction of αMHC and Hand1 cardiogenic cells in KO vs. WT CPCs (n=9). Treating these co-cultures with Quercetin, an inhibitor of nuclear β-catenin, resulted in partial rescue of the observed phenotype. This study uncovers a critical role of KLF15 for the maintenance of cardiac tissue homeostasis. Via inhibition of β-catenin transcription, KLF15 controls cardiomyogenic cell fate similar to embryonic cardiogenesis. This knowledge may provide a tool for activation of endogenous CPCs in the postnatal heart.

2018 ◽  
Vol 19 (10) ◽  
pp. 3153 ◽  
Author(s):  
J. Muñoz-Bello ◽  
Leslie Olmedo-Nieva ◽  
Leonardo Castro-Muñoz ◽  
Joaquín Manzo-Merino ◽  
Adriana Contreras-Paredes ◽  
...  

The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with β-catenin to promote cell proliferation.


2005 ◽  
Vol 25 (1) ◽  
pp. 324-335 ◽  
Author(s):  
Ho-Geun Yoon ◽  
Youngsok Choi ◽  
Philip A. Cole ◽  
Jiemin Wong

ABSTRACT A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


2005 ◽  
Vol 25 (9) ◽  
pp. 3461-3474 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Fan Zhang ◽  
Gwo Jiunn Hwang ◽  
Mark J. Swanson ◽  
...  

ABSTRACT Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 693 ◽  
Author(s):  
Sébastien Dupasquier ◽  
Philippe Blache ◽  
Laurence Picque Lasorsa ◽  
Han Zhao ◽  
Jean-Daniel Abraham ◽  
...  

Inactivating mutations of the tumor suppressor Adenomatosis Polyposis Coli (APC), which are found in familial adenomatosis polyposis and in 80% of sporadic colorectal cancers (CRC), result in constitutive activation of the Wnt/β-catenin pathway and tumor development in the intestine. These mutations disconnect the Wnt/β-catenin pathway from its Wnt extracellular signal by inactivating the APC/GSK3-β/axin destruction complex of β-catenin. This results in sustained nuclear accumulation of β-catenin, followed by β-catenin-dependent co-transcriptional activation of Wnt/β-catenin target genes. Thus, mechanisms acting downstream of APC, such as those controlling β-catenin stability and/or co-transcriptional activity, are attractive targets for CRC treatment. Protein Kinase C-α (PKCα) phosphorylates the orphan receptor RORα that then inhibits β-catenin co-transcriptional activity. PKCα also phosphorylates β-catenin, leading to its degradation by the proteasome. Here, using both in vitro (DLD-1 cells) and in vivo (C57BL/6J mice) PKCα knock-in models, we investigated whether enhancing PKCα function could be beneficial in CRC treatment. We found that PKCα is infrequently mutated in CRC samples, and that inducing PKCα function is not deleterious for the normal intestinal epithelium. Conversely, di-terpene ester-induced PKCα activity triggers CRC cell death. Together, these data indicate that PKCα is a relevant drug target for CRC treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kenneth N. Grisé ◽  
Nelson X. Bautista ◽  
Krystal Jacques ◽  
Brenda L. K. Coles ◽  
Derek van der Kooy

Abstract Background Adult mammalian retinal stem cells (RSCs) readily proliferate, self-renew, and generate progeny that differentiate into all retinal cell types in vitro. RSC-derived progeny can be induced to differentiate into photoreceptors, making them a potential source for retinal cell transplant therapies. Despite their proliferative propensity in vitro, RSCs in the adult mammalian eye do not proliferate and do not have a regenerative response to injury. Thus, identifying and modulating the mechanisms that regulate RSC proliferation may enhance the capacity to produce RSC-derived progeny in vitro and enable RSC activation in vivo. Methods Here, we used medium-throughput screening to identify small molecules that can expand the number of RSCs and their progeny in culture. In vitro differentiation assays were used to assess the effects of synthetic glucocorticoid agonist dexamethasone on RSC-derived progenitor cell fate. Intravitreal injections of dexamethasone into adult mouse eyes were used to investigate the effects on endogenous RSCs. Results We discovered that high-affinity synthetic glucocorticoid agonists increase RSC self-renewal and increase retinal progenitor proliferation up to 6-fold without influencing their differentiation in vitro. Intravitreal injection of synthetic glucocorticoid agonist dexamethasone induced in vivo proliferation in the ciliary epithelium—the niche in which adult RSCs reside. Conclusions Together, our results identify glucocorticoids as novel regulators of retinal stem and progenitor cell proliferation in culture and provide evidence that GCs may activate endogenous RSCs.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Prabhu Mathiyalagan ◽  
Yaxuan Liang ◽  
Adriano S Martins ◽  
Douglas W Losordo ◽  
Roger J Hajjar ◽  
...  

Exosomes are cell-derived nanovesicles that carry and shuttle microRNAs (miRNAs) to mediate cell-cell communication. Vast majority of cell types including cardiac myocytes and progenitors actively secrete exosomes, whose miRNA contents are altered after physiological or pathological changes such as myocardial ischemia (MI). In this new study, we have discovered that chemical modification to mRNAs is a novel regulator of ischemia-induced gene expression changes in the heart. We hypothesized that the benefits of human CD34 + stem cell-derived exosomes (CD34exo) are mediated by mRNA modifications in the target cells via miRNA delivery. MiRNA profiling and bioinformatic analysis identified that CD34exo is selectively enriched with a number of miRNAs that directly target genes implicated in regulation of mRNA modifications. Interestingly, under myocardial ischemia, there was a significant increase in mRNA modifications in the mouse heart, which was decreased by about 70% with CD34exo-treatment. In line with the in vivo MI data, in vitro hypoxic stimulation in neonatal / adult rodent myocytes and non-myocytes increased mRNA modifications and controls known regulators of those mRNA modifications. Loss-of-function studies for regulators of mRNA modifications attenuated hypoxia-induced changes to epitranscriptome indicating important roles for these molecules under stress conditions. Finally, using gain-of-function and loss-of-function studies, we demonstrate that miR-126, one of the most enriched miRNAs in CD34exo, plays a critical role in regulating the mRNA modifications. We conclude that miRNAs enriched in CD34exo mediate their cardioprotective effect at least in part, by regulating the mRNA epitranscriptome of the target cell. Our new data suggests hypoxia as a novel regulator of the mRNA epitranscriptome and provides novel insights to post-transcriptional gene regulation in the heart.


Author(s):  
Mary Ellen Pavone ◽  
Allison R Grover ◽  
Rafael Confino ◽  
Elizabeth K Pearson ◽  
Saurabh Malpani ◽  
...  

Objective: Using a baboon model, we determined the changing expression of Retinoic Acid (RA) target genes during the menstrual cycle and during disease progression. This change could explain the cellular response and changes characteristic of endometriosis. In previous studies, we established that endometriosis affects the CRABP2:FABP5 ratio in an in vitro environment, shifting toward apoptosis and differentiation with higher CRABP2, and anti-apoptosis with higher levels of FABP5. Intervention(s): Endometriosis was induced in female baboons with intraperitoneal inoculation of menstrual endometrium ( n = 2–4). Tissue was harvested via endometrectomy during different stages of the menstrual cycle as well at 3, 6, and 12 month timepoints after inoculation with endometriosis. Main outcome measure(s): Real time PCR was used to quantify STRA6 (a gene responsible for retinol uptake), CRABP2 (a gene necessary for apoptotic and anti-apoptotic estrogenic RA effects), and FABP5 (a gene that mediates the anti-apoptotic actions of RA). Results: STRA6 and CRABP2 expression were highest in the proliferative phase and lowest in the late secretory phase. FABP5 expression remained stable throughout the 12 months following the induction of the disease, whereas STRA6 and CRABP2 continued to decrease during the same period. Conclusions: Our study confirms that a shift in the CRABP2:FABP5 ratio has similar in vivo effects as it does in vitro: changing RA expression with disease induction and progression. As CRABP2 may be important in determining cell fate in the endometrium, gene expression changes could contribute to the anti-apoptotic behavior of affected cells. As expression changes more during progression, earlier rather than later treatment becomes more critical in reducing the rate of disease progression.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Kelly E Sullivan ◽  
Sharada Sant ◽  
Laura Burns ◽  
Lauren D Black

Limitations associated with cardiac progenitor cell (CPC) therapy of myocardial infarction (MI) including poor engraftment, cell death and incomplete cardiac differentiation have hindered the efficacy of treatment in pre-clinical trials. Given that the extracellular environment plays an important role in regulating cell function and that it is significantly remodeled following MI, it is critical to understand how these changes impact the therapeutic potential of CPCs. In this study, we investigated how the alterations to the extracellular matrix (ECM) following MI impacted the regenerative potential of CPCs in vitro. Hearts were decellularized with 1% SDS prior to MI and 1 and 4 weeks post-MI (Fig A) and the composition of the left ventricle or scar was characterized through LC-MS/MS. While Periostin and Collagen I increased post-MI, Laminin decreased (Fig B). c-kit+ CPCs isolated from rat hearts 1 week post-MI were cultured on tissue culture plastic (TCP) coated with pepsin-solubilized ECM. Our results demonstrated that the healthy matrix promoted the expression of pro-angiogenic growth factors, while maintaining the cells in an undifferentiated state (Fig D,E). Alternatively, 1 week ECM promoted cell adherence (Fig C) and the expression of pro-survival growth factors (Fig D) and GATA-4 (Fig E). Cells cultured on 4 week ECM demonstrated significant differentiation towards vascular lineages through their expression of smooth muscle (TAGLN) and endothelial (VWF) markers. By characterizing how the changing ECM composition following MI impacts CPC fate, we may be able to develop therapeutic strategies that modulate cell fate/ function in vivo following implantation.


Sign in / Sign up

Export Citation Format

Share Document