scholarly journals Monitoring wetland water quality related to livestock grazing in amphibian habitats

2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Kelly L. Smalling ◽  
Jennifer C. Rowe ◽  
Christopher A. Pearl ◽  
Luke R. Iwanowicz ◽  
Carrie E. Givens ◽  
...  

AbstractLand use alteration such as livestock grazing can affect water quality in habitats of at-risk wildlife species. Data from managed wetlands are needed to understand levels of exposure for aquatic life stages and monitor grazing-related changes afield. We quantified spatial and temporal variation in water quality in wetlands occupied by threatened Oregon spotted frog (Rana pretiosa) at Klamath Marsh National Wildlife Refuge in Oregon, United States (US). We used analyses for censored data to evaluate the importance of habitat type and grazing history in predicting concentrations of nutrients, turbidity, fecal indicator bacteria (FIB; total coliforms, Escherichia coli (E. coli), and enterococci), and estrogenicity, an indicator of estrogenic activity. Nutrients (orthophosphate and ammonia) and enterococci varied over time and space, while E. coli, total coliforms, turbidity, and estrogenicity were more strongly associated with local livestock grazing metrics. Turbidity was correlated with several grazing-related constituents and may be particularly useful for monitoring water quality in landscapes with livestock use. Concentrations of orthophosphate and estrogenicity were elevated at several sites relative to published health benchmarks, and their potential effects on Rana pretiosa warrant further investigation. Our data provided an initial assessment of potential exposure of amphibians to grazing-related constituents in western US wetlands. Increased monitoring of surface water quality and amphibian population status in combination with controlled laboratory toxicity studies could help inform future research and targeted management strategies for wetlands with both grazing and amphibians of conservation concern.

Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 206 ◽  
Author(s):  
Juliane Dao ◽  
Kathrin Stenchly ◽  
Oumar Traoré ◽  
Philip Amoah ◽  
Andreas Buerkert

Vegetable production in urban gardens of Ouagadougou contributes to food security, but water for irrigation is often of low quality. This is particularly acute if irrigation water is taken from wastewater polluted channels. This study aimed at (i) verifying to what degree irrigation water quality is correlated with contamination of lettuce with Escherichia coli, total coliforms, and Salmonella spp., and (ii) assessing effects of post-harvest handling on pathogen development during the trade chain. We tested pathogen removal efficiency on lettuce by applying post-harvest washing. Irrigation water of production areas in Ouagadougou (n = 10) showed a mean E. coli load of 2.1 × 105 CFU 100 mL−1. In 60% of the cases, irrigation water did not meet the standards of the World Health Organization (WHO) for safe irrigation water, and in 30% of the cases, irrigation water was contaminated with Salmonella spp. Loads of total coliforms on lettuce leaves ranged from 2.9 × 103 CFU g−1 to 1.3 × 106 CFU g−1, while E. coli averaged 1.1 × 102 CFU g−1. Results on post-harvest handling revealed that microbial loads increased along the trade chain. Overall, half of all lettuce samples (n = 60) were tested positively for Salmonella spp. The experiment showed that appropriate post-harvest handling could prevent the increase of total coliforms.


2006 ◽  
Vol 54 (3) ◽  
pp. 41-48 ◽  
Author(s):  
M. Batté ◽  
C. Féliers ◽  
P. Servais ◽  
V. Gauthier ◽  
J.-C. Joret ◽  
...  

Biofilm and microbial water quality were studied in four middle size full-scale distribution systems (DS) in France serving 5,000–30,000 inhabitants (maximum residence time 23–160 h) through three sampling campaigns over 1 year. Three of these DSs were chosen because of a quite high occurrence of bacterial indicators (i.e. total coliforms), the last DS was considered as a reference. Biofilm was studied on cast iron coupons incubated for more than 1 month in devices continuously fed with water from the DS in conditions imitating those met in DS. The devices were located at different points (4–6) along each DS. The abundance of bacteria in biofilm was estimated by heterotrophic plate counts (HPC) after detachment of the biofilm from the support by sonication. Microbiological water quality was estimated in parallel; analysis of total coliforms, E. coli, enterococci and anaerobic sulphide-reducing bacteria spores (ASRB spores) was carried out in biofilm and water. Over the period of the study, 171 water samples and 57 biofilm samples were collected. Over these 171 waters, 19 (11%) were positive for at least one of the measured indicators while two biofilm samples were positive (3.5%). Significant differences were observed in the levels of contamination between the DSs. High residence time in the DS, low disinfectant residual and high temperature increased the risk of indicator occurrence in the water phase. Due to the low number of biofilm samples positive for bacterial indicators, the data collected in the present study did not allow observation of a direct association between biofilm and water contaminations, even if the occurrence of indicators in water appeared on DSs with the highest density of biofilm (HPC).


2011 ◽  
Vol 9 (4) ◽  
pp. 708-717 ◽  
Author(s):  
Andrew S. Ferguson ◽  
Brian J. Mailloux ◽  
Kazi M. Ahmed ◽  
Alexander van Geen ◽  
Larry D. McKay ◽  
...  

The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (≈103 MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t50 = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality.


2017 ◽  
Vol 6 (2) ◽  
pp. 411 ◽  
Author(s):  
Kirsten Ngaire Nicholson ◽  
Klaus Neumann ◽  
Carolyn Dowling ◽  
Subodh Sharma

During the 2016 pre-monsoon dry season, we undertook a systematic study of water quality, specifically fecal contamination of drinking water, in the Khumbu Valley, Sagarmatha National Park (SNP, Mt. Everest region) and SNP buffer zone, Nepal. Our goal was to quantify physical parameters (temperature, pH, conductivity and total dissolved solids), and the presence of fecal coliforms (E. coli and total coliforms) in drinking water and drinking water sources (predominately groundwater-fed springs). This data set will function as a baseline for access to potable water and further monitoring. Sample sites were selected based on primary use as a drinking water and/or drinking water source for each community. In general, there is little correlation between and physical parameters however, there are very weak correlations between total coliform data and increasing temperature, and decreasing elevation and pH. There does, however, appear to be a correlation between population (including tourist numbers) and both E. coli and total coliforms. Our study clearly indicates that the presence of bacterial indicators of fecal pollution during the dry season. Samples from the more populated, lower altitude areas had higher levels of E. coli and coliform bacteria. Importantly, drinking water that was stored in tanks or transported long distances had a much higher incidence of E. coli and total coliforms suggesting that a change in water handling practices might have an important impact on drinking water quality and population health. 


2008 ◽  
Vol 54 (6) ◽  
pp. 472-478 ◽  
Author(s):  
Annie Locas ◽  
Christine Barthe ◽  
Aaron B. Margolin ◽  
Pierre Payment

To verify previous conclusions on the use of bacterial indicators suggested in regulations and to investigate virological quality of groundwater, a 1-year study was undertaken on groundwater used as a source of drinking water in 3 provinces in Canada. Raw water from 25 municipal wells was sampled during a 1-year period for a total of 167 samples. Twenty-three sites were selected on the basis of their excellent historical bacteriological water quality data, and 2 sites with known bacteriological contamination were selected as positive controls. Water samples were analyzed for general water quality indicators (aerobic endospores, total coliforms), fecal indicators ( Escherichia coli , enterococci, somatic and male-specific coliphages), total culturable human enteric viruses (determined by cell culture and immunoperoxidase), noroviruses (analyzed by reverse-transcriptase – polymerase chain reaction (RT–PCR)), adenovirus types 40 and 41 (analyzed by integrated cell culture (ICC) – PCR), and enteroviruses and reoviruses types 1, 2, and 3 (analyzed by ICC–RT–PCR). General water quality indicators were found very occasionally at the clean sites but were frequently present at the 2 contaminated sites. Only one of 129 samples from the 23 clean sites was positive for enterococci. These results confirm the value of raw water quality historical data to detect source water contamination affecting wells that are vulnerable. Samples from the 2 contaminated sites confirmed the frequent presence of fecal indicators: E. coli was found in 20/38 samples and enterococci in 12/38 samples. Human enteric viruses were not detected by cell culture on MA-104 cells nor by immunoperoxidase detection in any sample from the clean sites but were found at one contaminated site. By ICC–RT–PCR and ICC–PCR, viruses were found by cytopathic effect in one sample from a clean site and they were found in 3 samples from contaminated sites. The viruses were not detected by the molecular methods but were confirmed as picornaviruses by electron microscopy. Noroviruses were not detected in any samples. The results obtained reinforce the value of frequent sampling of raw water using simple parameters: sampling for total coliforms and E. coli remains the best approach to detect contamination of source water by fecal pollutants and accompanying pathogens. The absence of total coliforms at a site appears to be a good indication of the absence of human enteric viruses.


Author(s):  
Sakshi Khullar ◽  
Nanhey Singh

Abstract Water is a prime necessity for the survival and sustenance of all living beings. Over the past few years, the water quality of rivers has been adversely affected due to harmful wastes and pollutants. This ever-increasing water pollution is a matter of great concern as it is deteriorating the water quality, making it unfit for any type of use. Contaminated water resources can cause serious effects on humans as well as aquatic life. Hence, water quality monitoring of reservoirs is essential. Recently, water quality modeling using AI techniques has generated a lot of interest and it can be very beneficial in ecological and water resources management. This paper presents the state-of-the-art application of machine learning techniques in forecasting river water quality. It highlights the different key techniques, advantages, disadvantages, and applications with respect to monitoring the river water quality. The review also intends to find the existing challenges and opportunities for future research.


Water Policy ◽  
2013 ◽  
Vol 15 (6) ◽  
pp. 936-942 ◽  
Author(s):  
Yan Zhen-guang ◽  
Wang Hong ◽  
Wang Yi-zhe ◽  
Zhang Ya-hui ◽  
Yu Ruo-zhen ◽  
...  

Water quality criteria (WQC) form a scientific basis for the development of water quality standards. The study of WQC in China has been insufficient. This mini review introduces the progress that has been made towards the establishment of a WQC system in China. A systematic WQC study has been ongoing in China for several years, mainly referring to the WQC system in the United States. Some important kinds of WQC have been studied, including aquatic life, biological, sediment quality, lake nutrient and human health criteria, focusing on the aquatic life criteria in the present phase. Technical guidelines for deriving the major criteria and their values for some typical pollutants have been preliminarily proposed. The future research needs for WQC development include the screening of priority pollutants, the investigation of aquatic biota distribution, establishment of a toxicity test method and the development of environmental quality criteria database, etc.


2022 ◽  
Vol 82 ◽  
Author(s):  
J. U. Rehman ◽  
S. Alam ◽  
S. Khalil ◽  
M. Hussain ◽  
M. Iqbal ◽  
...  

Abstract Cranes are the large and attractive Creatures of nature with long necks, legs, and life-span. Adults of both sexes are the same with similar color patterns. Demoiselle cranes spend most of their lifespan on dry grasses. They are also found around the stream, rivers, shallow lakes, natural wetlands, and depressions. To evaluate the current status of habitat use and major threats a study was conducted in tehsil Domel district Bannu. Line transect method and water quality tests (temperature, PH, contamination of E-coli bacteria) were used. To determine the major threats questionnaire method was used. The whole data was analyzed by using SPSS 21 version. Based on the distribution four study sites were selected and four water samples from each study site were taken. Most sites were moderate to highly degraded except Kashoo and kurram river mixing point which was low degraded with livestock grazing and human activities. Water quality tests showed PH ranges from 7-9, temperature 6.5-8.5, and contamination of E-coli in all samples. The social survey revealed that hunting, habitat degradation, and pollution as major threats. Effective long-term conservation and management in the study area are needed to focus on the protection of disturbance-free habitat.


2021 ◽  
Author(s):  
Alan Gomes Mendonça ◽  
Josilena de Jesus Laureano ◽  
Daíse da Silva Lopes ◽  
Lindolaine Machado de Sousa ◽  
Tiago de Oliveira Lima ◽  
...  

Abstract. Water resource management in Brazil is constantly evolving, and greater knowledge about this resource allows better planning and more sustainable uses. In Brazil, the improvement of water resource management faces the difficulty of implementing the instruments of the National Water Resources Policy, such as classification of water bodies. Thus, to help improve the water management instruments in the country's northern region, the objective of the present study was to diagnose the influence of land use and occupation on the water quality of the Igarapé Nazaré microbasin. For this purpose, indirect methods of landscape analysis were applied based on the processing of remote sensing images in a GIS. For the water quality analysis, 10 collection points were selected in the watershed, with samples collected at each one in four periods (high water; HW/LW transition; low water; LW/HW transition). In the collected samples, 14 parameters were analyzed, namely: temperature, pH, electrical conductivity; turbidity; water transparency and depth; dissolved oxygen; chlorophyll a, ammonia, nitrite, nitrate, total phosphorus and dissolved phosphorus; total coliforms and E. coli. The spatial analysis showed that the microbasin has about 84 % anthropized territory, with emphasis on agriculture, and sources of pollution from industries, fish farming and domestic sewage. Parameter analyses showed high values of total phosphorus (0.005–27.55 mg.L−1), total coliforms (4,103–1,09,106 CFU) and E. coli (0–5.8,105 CFU), and low DO concentration (0.0–8.33 mg.L−1), below the official limit established in all periods analyzed The water quality of the Igarapé Nazaré microbasin was found to suffer strong anthropic interference, requiring improvement of the sanitary infrastructure of city of Ji-Paraná, for maintenance of the watershed in class 2.


Author(s):  
Santhosh K. M ◽  
S. Prashanth

Urban development, agricultural runoff and industrialization have contributed pollution loading on the environment.  In this study Hemavathi river water from a stretch from its origin point to its sangama was studied for pollution load by determining parameters of water quality like pH, Alkalinity,  Ca, Mg, Nitrate, TDS, BOD, COD , and the results were compared with WHO and BIS standards to draw final conclusion on the quality of water.


Sign in / Sign up

Export Citation Format

Share Document