scholarly journals Effects of Water Quality and Post-Harvest Handling on Microbiological Contamination of Lettuce at Urban and Peri-Urban Locations of Ouagadougou, Burkina Faso

Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 206 ◽  
Author(s):  
Juliane Dao ◽  
Kathrin Stenchly ◽  
Oumar Traoré ◽  
Philip Amoah ◽  
Andreas Buerkert

Vegetable production in urban gardens of Ouagadougou contributes to food security, but water for irrigation is often of low quality. This is particularly acute if irrigation water is taken from wastewater polluted channels. This study aimed at (i) verifying to what degree irrigation water quality is correlated with contamination of lettuce with Escherichia coli, total coliforms, and Salmonella spp., and (ii) assessing effects of post-harvest handling on pathogen development during the trade chain. We tested pathogen removal efficiency on lettuce by applying post-harvest washing. Irrigation water of production areas in Ouagadougou (n = 10) showed a mean E. coli load of 2.1 × 105 CFU 100 mL−1. In 60% of the cases, irrigation water did not meet the standards of the World Health Organization (WHO) for safe irrigation water, and in 30% of the cases, irrigation water was contaminated with Salmonella spp. Loads of total coliforms on lettuce leaves ranged from 2.9 × 103 CFU g−1 to 1.3 × 106 CFU g−1, while E. coli averaged 1.1 × 102 CFU g−1. Results on post-harvest handling revealed that microbial loads increased along the trade chain. Overall, half of all lettuce samples (n = 60) were tested positively for Salmonella spp. The experiment showed that appropriate post-harvest handling could prevent the increase of total coliforms.

2014 ◽  
Vol 13 (2) ◽  
pp. 446-458 ◽  
Author(s):  
Florentina Zurita ◽  
Alejandra Carreón-Álvarez

Three pilot-scale two-stage hybrid constructed wetlands were evaluated in order to compare their efficiency for total coliforms (TCol) and Escherichia coli removal and to analyze their performances in two 1-year periods of experimentation. System I consisted of a horizontal flow (HF) constructed wetland (CW) followed by a stabilization pond. System II was also configured with a HF CW as a first stage which was then followed by a vertical flow (VF) CW as a second stage. System III was configured with a VF CW followed by a HF CW. In the first year of evaluation, the HF–VF system was the most effective for TCol removal (p < 0.05) and achieved a reduction of 2.2 log units. With regard to E. coli removal, the HF–VF and VF–HF systems were the most effective (p < 0.05) with average reductions of 3.2 and 3.8 log units, respectively. In the second year, the most effective were those with a VF component for both TCol and E. coli which underwent average reductions of 2.34–2.44 and 3.44–3.74 log units, respectively. The reduction achieved in E. coli densities, in both years, satisfy the World Health Organization guidelines that require a 3–4 log unit pathogen reduction in wastewater treatment systems.


2014 ◽  
Vol 70 (1) ◽  
pp. 108-113 ◽  
Author(s):  
N. D. Miranda ◽  
E. L. Oliveira ◽  
G. H. R. Silva

The purpose of this research was to study the disinfection of sanitary effluent from constructed wetlands, evaluating the oxidation of organic matter, the formation of formaldehyde, as well as the efficiency of total coliforms and Escherichia coli inactivation. A constant flow of ozone was applied to the batch system in 5 and 10 mg.O3 L−1 doses with contact times of 5 and 10 min. This study revealed that the average values of formaldehyde formation ranged between 259.00 and 379.00 μg L−1, which means that the values are within World Health Organization recommended values. The total coliforms and E. coli showed complete inactivation in almost all tests. The dose of ozone 5 mg.O3 L−1 and contact time of 5 min were sufficient for a significant reduction of the concentration levels of pathogens in constructed wetlands effluent with similar characteristics, thus allowing for its agricultural reuse.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Larry Pax Chegbeleh ◽  
Delali Kwasi Aklika ◽  
Bismark Awinbire Akurugu

Hydrochemical data of groundwater samples obtained from the mudstones, sandstones, and siltstones aquifer units that underlie the study area have been characterized. The aim of this study was to assess the suitability of groundwater for drinking, domestic, and agricultural purposes. The physico-chemical parameters were initially compared with the World Health Organization (WHO) standards for potable water. They were further subjected to various hydrochemical techniques to assess the overall water quality for drinking purposes. Conventional methods of assessing irrigation water suitability were also adopted. The results indicate that, with the exception of HCO3− characterized as unsuitable for drinking water, most of the parameters are within the WHO permissible limits and are thus characterized as suitable for drinking water. A few samples however show slight deviation. The results also show that the abundance of major cations in groundwater is in the order: Na+ > Ca2+ > Mg2+ > K+. However, the abundance of the major anions is in the order: HCO3− > Cl− > SO42−. Na-HCO3 is thus inferred as the dominant water type in the area. Analyses of the overall Water Quality Index (WQI) and irrigation water assessment indices suggest that groundwater in the area is generally suitable for drinking, domestic, and irrigation purposes.


Author(s):  
Dora Cardona Rivas ◽  
Militza Yulain Cardona Guzmán ◽  
Olga Lucía Ocampo López

Objective: To characterize the burden of intestinal infectious diseases attributable to drinking-water quality in 27 municipalities in the central region of Colombia. Materials and methods: A time-trend ecological study. The drinking-water quality of the National Institute of Health and the Institute of Hydrology, Meteorology and Environmental Studies was identified. The disease burden was calculated based on the mortality registered in the National Department of Statistics and the records of morbidity attended by the Social Protection Integrated Information System. The etiological agents reported in morbidity records and the observation of environmental conditions in the municipalities of the study were included. The disease burden was determined according to the methodology recommended by the World Health Organization (WHO).


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Molla Rahman Shaibur ◽  
Mohammed Sadid Hossain ◽  
Shirina Khatun ◽  
F. K. Sayema Tanzia

AbstractThis study aimed to determine the quality of drinking water supplied in different types of food stalls in Jashore Municipality, Bangladesh. A total of 35 water samples were collected from different tea stalls, street side fast food stalls, normal restaurants and well-furnished restaurants. The water quality was evaluated by determining the distinct physical, chemical and biological parameters. The results revealed that the water used in the food stalls and restaurants for drinking purpose was in desired quality in terms of turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO3−), sulfate (SO42−), phosphate (PO43−), chloride (Cl−), sodium (Na) and potassium (K) concentrations. The values were within the permissible limit proposed by the Bangladesh Bureau of Statistics and the World Health Organization. Concentrations of calcium (Ca) and magnesium (Mg) found in several samples were higher than the World Health Organization standard. Iron (Fe) concentrations were higher than the permissible limit of the World Health Organization. Only 46% exceeded the permissible limit of Bangladesh Bureau Statistics. The threatening result was that the samples were contaminated by fecal coliform, indicating that the people of Jashore Municipality may have a greater chance of being affected by pathogenic bacteria. The drinking water provided in the street side fast food stalls was biologically contaminated. The findings demonstrate that the drinking water used in food stalls and restaurants of Jashore Municipality did not meet up the potable drinking water quality standards and therefore was detrimental to public health.


2021 ◽  
Vol 232 (8) ◽  
Author(s):  
Ali Chabuk ◽  
Zahraa Ali Hammood ◽  
Nadhir Al-Ansari ◽  
Salwan Ali Abed ◽  
Jan Laue

AbstractIraq currently undergoing the problem of water shortage, although Iraq has two Rivers (Euphrates and Tigris) pass throughout most of its areas, and they have represented a major source of water supply. In the current research, to evaluate the quality of the Euphrates river in Iraq based on the values of total dissolved salts (TDS), the TDS concentrations were collected from sixteen sections along the river in the three succeeding years (2011, 2012, and 2013). The evaluation of the river was done depending on the classification of (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland). of rivers for drinking uses. Inverse Distance Weighting Technique (IDWT) as a tool in the GIS was employed to establish the maps of the river that using interpolation/prediction for the TDS concentrations to each selected year and the average values of TDS for these 3 years. Based on the five categories of rivers’ classification of the TDS concentrations according to the (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland), the Euphrates river was classified, and the maps of classification for the years 2011, 2012 and 2013 and the average values for 3 years were created. The average values for 3 years of TDS along the Euphrates river indicated that the sections from SC-1 to SC-4 as moderate-water-quality-Category-3, the sections from SC-5 to SC-10 as poor-water-quality-Category-4, while the sections between SC-11 to SC-16 as very poor-water-quality-Category-5. The interpolation maps showed that the Euphrates river in Iraq was ranged from moderate water quality (Category-3) to very poor water quality (Category-5).


2021 ◽  
Vol 193 (8) ◽  
Author(s):  
Desmond Tichaona Mugadza ◽  
Sibusisiwe Isabel Nduku ◽  
Edlyn Gweme ◽  
Sherpherd Manhokwe ◽  
Patience Marume ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
pp. 1-6
Author(s):  
Roselyn Naidu ◽  
Lionel Joseph ◽  
Syed Sauban Ghani

The current study investigated drinking water quality of samples taken from Arolevu village, a locality situated in Nadi, Fiji. The groundwater samples were collected and subjected to a comprehensive physicochemical and biological analysis. The analysis for the drinking water sample was conducted seasonally, six times a year, that is, three for the dry season and three for the wet season. The results retrieved from the analysis were compared to its maximum contamination levels (MCLs) based on the health-based guidelines provided by the World Health Organization (WHO). The WHO standards were used as an attribute to determine the sources of contaminants likely to be present at the study site. A degradation trend in drinking water quality in the context of climate change may lead to potential health impacts. Hence, it is important to understand seasonal variations in drinking water quality. A proper understanding of the drinking water quality through seasonal water analysis for nitrate, nitrite, potassium, calcium, magnesium and chlorine content as well as its microbiological presence to reduce preventable risks such as using calculated amounts of fertilisers and upgrading the sewerage system to alleviate drinking water contamination is devised through this study.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


2017 ◽  
Vol 38 (1) ◽  
pp. 175 ◽  
Author(s):  
Natalia Harumi Niguma ◽  
Jacinta Sanchez Pelayo ◽  
Tereza Cristina Rocha Moreira de Oliveira

The aims of this study were to evaluate the contamination of lettuce (Lactuca sativa), produced in Londrina, Paraná (PR), with total coliform, coliform at 45 °C, E. coli, and Salmonella spp.; and to determine the E. coli contamination of irrigation water used at the farms studied. Four farms were evaluated, of which three produced lettuce using a conventional system and one using an organic system. An evaluation of the production practices of the farms was also carried out. A total of 111 samples were analyzed, 71 lettuce samples from the conventional system and 40 samples from the organic system. A total of eight irrigation water samples were collected for analysis. Coliform at 45 °C counts above the limit tolerated by Brazilian legislation were observed in 2.8% (2/71) of conventionally grown lettuce samples, and Salmonella spp. was isolated in 1.4% (1/71) of those samples. In the organic lettuce samples, 12.5% (5/40) had coliform at 45 °C counts above the limit tolerated and Salmonella spp. was not detected. Irrigation water samples from three farms were unsatisfactory, with counts higher than 102MPN of E. coli per 100mL. The results of this study demonstrate that most conventionally grown lettuce samples show good sanitary conditions in production, and that lettuce contamination is not related to contamination found in irrigation water samples. The results also showed that the organic production practices required by Brazilian certification agencies should be applied to ensure that contamination of produced lettuce remains controlled.


Sign in / Sign up

Export Citation Format

Share Document