scholarly journals Influence of a bark-filler on the properties of PLA biocomposites

2021 ◽  
Vol 56 (15) ◽  
pp. 9196-9208
Author(s):  
Piotr Borysiuk ◽  
Piotr Boruszewski ◽  
Radosław Auriga ◽  
Leszek Danecki ◽  
Alicja Auriga ◽  
...  

AbstractIn this study, wood plastic composites (WPC) made of poly(lactic acid) PLA and a bark-filler were manufactured. Two degrees of bark comminution (10–35 mesh and over 35 mesh) and varied content of bark (40, 50 and 60%) were investigated. The studied panels were compared with analogically manufactured HDPE boards. The manufacture of composites involved two stages: at first, WPC granules with the appropriate formulation were produced using the extruder (temperatures in individual extruder sections were 170–180 °C) and crushing using a hammer mill after cooling the extruded composite; secondly, the obtained granulate was used to produce boards with nominal dimensions of 300 × 300 × 2.5 mm3 by flat pressing in a mold, using a single daylight press at a temperature 200 °C. The study proved that comminuted bark can be applied as a filler in PLA composites. However, an increase in bark content decreased mechanical properties (MOR, MOE) and deteriorated humidity resistance (high TS and WA) of the panels. Along with the increase in bark content, an increase in the contact angle of the composite surfaces and a decrease in the total surface energy were noted. It was also found that PLA composites have higher strength parameters and lower moisture resistance compared to HDPE composites with the same bark content. Graphical abstract

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 157
Author(s):  
Piotr Borysiuk ◽  
Krzysztof Krajewski ◽  
Alicja Auriga ◽  
Radosław Auriga ◽  
Izabela Betlej ◽  
...  

Due to the content of lignocellulosic particles, wood plastic composites (WPC) composites can be attacked by both domestic and mold fungi. Household fungi reduce the mechanical properties of composites, while mold fungi reduce the aesthetics of products by changing their color and surface decomposition of the wood substance. As part of this study, the impact of lignocellulosic fillers in the form of sawdust and bark in poly (lactic acid) (PLA)-based biocomposites on their susceptibility to mold growth was determined. The evaluation of the samples fouled with mold fungi was performed by computer analysis of the image. For comparison, tests were carried out on analogous high-density polyethylene (HDPE) composites. Three levels of composites’ filling were used with two degrees of comminution of lignocellulosic fillers and the addition of bonding aids to selected variants. The composites were produced in two stages employing extrusion and flat pressing. The research revealed that PLA composites were characterized by a higher fouling rate by Aspergillus niger Tiegh fungi compared to HDPE composites. In the case of HDPE composites. The type of filler (bark, sawdust) affected this process much more in the case of HDPE composites than for PLA composites. In addition, the use of filler with smaller particles enhanced the fouling process.


2021 ◽  
pp. 096739112110271
Author(s):  
Reyhaneh Fatahian ◽  
Mohammad Mirjalili ◽  
Ramin Khajavi ◽  
Mohammad Karim Rahimi ◽  
Navid Nasirizadeh

Differences in the properties of poly(vinyl alcohol) (PVA) and poly (lactic acid) (PLA) polymers have attracted much attention today. In this research, the aim is to produce PVA/PLA nanofibers with hydrophilicity and good mechanical properties using a mutual solvent. In this regard, the ability to produce PVA/PLA nanofibers using a mutual solvent was evaluated. The effect of electrospinning parameters on the morphology of nanofibers, hydrophilicity of nanofibers produced by measuring water absorption and contact angle as well as mechanical properties of nanofibers were considered. The results obtained from scanning electron microscopy analyses of the structure of these fibers showed that PVA had the highest viscosity of 5.64 Pa.s and the highest diameter of 260 nm, which decreased the thickness of the nanofibers with increasing PLA. And pure PLA had the lowest mean diameter of 76 nm. In the consideration of the mechanical properties of the prepared nanofibers, it was found that the combination of PLA and PVA nanofibers will lead to overlap the properties of each other and the creation of desirable mechanical properties. Moreover, in the investigation of water absorption and contact angle, it was concluded that the PVA/PLA was fully absorbed in less than 200 seconds and the samples have a contact angle of less than 52°. Finally, it was found that the average diameter of the produced nanofibers was decreased by increasing the voltage and the needle tip to collector distance by considering the PVA/PLA samples with a ratio of 50:50.


2008 ◽  
Vol 47-50 ◽  
pp. 435-438 ◽  
Author(s):  
J.K. Pandey ◽  
Won Shik Chu ◽  
C.S. Kim ◽  
Caroline S. Lee ◽  
Sung Hoon Ahn

Cellulose nano whiskers (CNW) are recently known for their tremendous applicability in development of eco-friendly material for various applications. Present attempt was aimed to extract the nano crystals of cellulose from grass of Korea and fabricate the composites with poly (lactic acid) in presence of compatibilizer after modification. Functional group variation, thermal behavior, surface morphology, and crystallinity were monitored by FT-IR, TGA, SEM, and XRD respectively. The water sensitivity measurements were also carried out for study of moisture resistance of composites. It was found that CNW have lower thermal stability than alkali treated long fiber whereas the crystalline nature of composites decreased significantly. The effect of modification of whiskers on the mechanical properties was also discussed in which increase in modulus was observed.


2017 ◽  
Vol 19 (1) ◽  
pp. 23
Author(s):  
Matheus Poletto ◽  
Janaína Junges ◽  
Ademir J. Zattera ◽  
Ruth M. C. Santana

Compósitos de polipropileno reciclado (PPr) con harina de madera de la espécie Pinus elliottii (PIE) fueron desarrollados utilizando aceite de soya, ácido esteárico, ácido caprílico y polipropileno graftizado con ácido itacónico (PPgAI) como agentes compatibilizantes. Los compósitos fueron procesados en extrusora de doble husillo co-rotante y posteriormente moldados por inyección. Los materiales fueron caracterizados a través de ensayos mecánicos, termogravimétricos, morfológicos, físicos y por ángulo de contacto. Los resultados de los ensayos mecánicos demostraron que el aceite de soya actuó como plastificante y redujo las propiedades mecánicas de los compósitos. Por otro lado, la adición de ácido esteárico, ácido caprílico y PPgAI generó en un aumento de la resistencia a flexión de 8, 20 y 29%, respectivamente, comparado al compósito sin compatibilizante. El compósito desarrollado con el agente compatibilizante comúnmente utilizado, el polipropileno graftizado con anhidrido maleico (PPgAM), presentó un aumento de 35% en la resistencia a la flexión. Resultados del análisis termogravimétrica (TGA), del compósito de PPr con aceite de soya presentó una reducción de su estabilidad térmica en 3% de pérdida de masa, lo que puede estar asociado a la mayor cantidad de oxígeno en su estructura molecular, lo que facilita mayor movilidad de las cadenas con el aumento de la temperatura y que pueden acelerar el proceso de degradación. En el caso de los compósitos con ácido caprílico y PPgAI mostraron un aumento superior a 10°C en la temperatura de 3% de perda de masa cuando comparados al compósito sin compatibilizante, indicando un aumento de la estabilidad térmica de estos compósitos. Los resultados de los análisis de microscopia electrónica de Barrido comprobaron la mayor interacción entre las fases (harina de madera y la matriz de PPr) para los compósitos desarrollados con ácido caprílico y PPgAI; y en relación a los resultados del ángulo de contacto de los materiales, mostraron que la incorporación del agente compatibilizante graftizado originó un aumento de la energía superficial de la matriz polimérica promoviendo una mejor interacción con la carga vegetal (hidrofílica). Palabras clave.-.- Madera plástica, Reciclaje mecánica, Agente compatibilizantes, Harina de madera. ABSTRACTWood plastic composites of recycled polypropylene PPr and Pinus elliottii (PIE) were developed using soybean oil, stearic acid, caprylic acid and itaconic acid grafted with polypropylene (PPgAI) as coupling agents. The composites were processed in a co-rotating twin screw extruder and injection molded. The materials were characterized by mechanical properties, thermogravimetric analysis, morphological, physical and contact angle. The results showed that soybean oil acted as a plasticizer and reduced mechanical properties of composites. On the other hand, the addition of stearic acid, caprylic acid and PPgAI resulted in an increase in flexural strength of 8, 20 and 29%, respectively, when compared to the composite without compatibilizer. The composites developed with coupling agent commonly used, polypropylene grafted with maleic anhydride (PPgAM) had a 35% increase in flexural strength. TGA results showed that the composite with soybean oil showed a reduction of thermal stability by 3% mass loss, which may be associated with more oxygen in their molecular structure and promote greater mobility of the polymer chains with increase the temperature and which may accelerate the degradation process. Composites with caprylic acid and PPgAI showed an increase above 10 ° C in temperature of 3% mass loss when compared to the composite without compatibilizer. SEM analysis showed the greater interaction between the wood flour and PPr for composites developed with PPgAI and caprylic acid. The results of contact angle showed that the incorporation of a PPgAM caused an increase in surface energy of the polymer matrix which may promote better interaction with hydrophilic wood flour. Keywords.- Wood plastic composites, Mechanical recycling, Coupling agent, Wood flour.


2014 ◽  
Vol 775-776 ◽  
pp. 553-556
Author(s):  
Bartira Brandão da Cunha ◽  
J.C.C. Lima ◽  
T.R.G. Silva ◽  
E.M. Araújo ◽  
T.J.A. de Mélo

In recent years the search for biodegradable polymers has excelled due to environmental issues. Among the biodegradable polymers from renewable sources, the poly (lactic acid) - PLA is one of the most widely used commercially, and several researches are being developed in order to improve their properties and thus increase its commercial applicability. Thus, this work aims to study the effects of incorporating polymer modifier (MBS Copolymer, Biostrength 150 - B150) and organoclay (Brasgel PA) in the properties of PLA. The study was conducted in two stages: with and without clay, and both with the B150. The concentrations used were 90/10 (PLA / modifier) and 3pcr (parts per hundred resin) of organoclay. The results showed that the mechanical properties of tensile and impact PLA significantly improved by using the polymeric modifier, indicating a gain in impact strength without a significant loss in modulus of elasticity.


Author(s):  
Jipeng Guo ◽  
Chi-Hui Tsou ◽  
Yongqi Yu ◽  
Chin-San Wu ◽  
Xuemei Zhang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


Sign in / Sign up

Export Citation Format

Share Document