Transfer Volumes of Small Peptides from Water to Aqueous Xylitol Solutions at 298.15 K

2009 ◽  
Vol 38 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Liang Guo ◽  
Li Xu ◽  
Lin Ma ◽  
Ruisen Lin
Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


2020 ◽  
Vol 21 (8) ◽  
pp. 821-830
Author(s):  
Vibhor Mishra

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.


2019 ◽  
Vol 20 (5) ◽  
pp. 481-487 ◽  
Author(s):  
Pengmian Feng ◽  
Zhenyi Wang

Anticancer peptide (ACP) is a kind of small peptides that can kill cancer cells without damaging normal cells. In recent years, ACP has been pre-clinically used for cancer treatment. Therefore, accurate identification of ACPs will promote their clinical applications. In contrast to labor-intensive experimental techniques, a series of computational methods have been proposed for identifying ACPs. In this review, we briefly summarized the current progress in computational identification of ACPs. The challenges and future perspectives in developing reliable methods for identification of ACPs were also discussed. We anticipate that this review could provide novel insights into future researches on anticancer peptides.


2019 ◽  
Vol 112 (1) ◽  
Author(s):  
Zhaoqianqi Feng ◽  
Huaimin Wang ◽  
Meihui Yi ◽  
Chieh‐Yun Lo ◽  
Ashanti Sallee ◽  
...  

Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15 ◽  
Author(s):  
Jiajia Chang ◽  
Xiaoqin He ◽  
Jingmei Hu ◽  
Peter Muiruri Kamau ◽  
Ren Lai ◽  
...  

Prokineticins are highly conserved small peptides family expressed in all vertebrates, which contain a wide spectrum of functions. In this study, a prokineticin homolog (Bv8-AJ) isolated from the venom of frog Amolops jingdongensis was fully characterized. Bv8-AJ accelerated full-thickness wounds healing of mice model by promoting the initiation and the termination of inflammatory phase. Moreover, Bv8-AJ exerted strong proliferative effect on fibroblasts and keratinocytes isolated from newborn mice by activating interleukin (IL)-1 production. Our findings indicate that Bv8 is a potent wound healing regulator and may reveal the mechanism of rapid wound-healing in amphibian skins.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 106
Author(s):  
Joana N. Martins ◽  
João Carlos Lima ◽  
Nuno Basílio

To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2657
Author(s):  
Maryam Atef ◽  
Yasmina Ait Chait ◽  
Seyed Mahdi Ojagh ◽  
Ali Mohammad Latifi ◽  
Mina Esmaeili ◽  
...  

This study investigated peptide fractions from fish skin collagen for antibacterial activity against Escherichia coli and Salmonella strains. The collagen was hydrolyzed with six commercial proteases, including trypsin, Alcalase, Neutrase, Flavourzyme, pepsin and papain. Hydrolyzed samples obtained with trypsin and Alcalase had the largest number of small peptides (molecular weight < 10 kDa), while the hydrolysate produced with papain showed the lowest degree of hydrolysis and highest number of large peptides. Four hydrolysates were found to inhibit the growth of the Gram-negative bacteria, with papain hydrolysate showing the best activity against E. coli, and Neutrase and papain hydrolysates showing the best activity against S. abony; hydrolysates produced with trypsin and pepsin did not show detectable antibacterial activity. After acetone fractionation of the latter hydrolysates, the peptide fractions demonstrated enhanced dose-dependent inhibition of the growth (colony-forming units) of four Salmonella strains, including S. abony (NCTC 6017), S. typhimurium (ATCC 13311), S. typhimurium (ATCC 14028) and S. chol (ATCC 10708). Shotgun peptidomics analysis of the acetone fractions of Neutrase and papain hydrolysates resulted in the identification of 71 and 103 peptides, respectively, with chain lengths of 6–22 and 6–24, respectively. This work provided an array of peptide sequences from fish skin collagen for pharmacophore identification, structure–activity relationship studies, and further investigation as food-based antibacterial agents against pathogenic microorganisms.


2021 ◽  
Vol 22 (3) ◽  
pp. 1364
Author(s):  
V. V. Krishnan ◽  
Timothy Bentley ◽  
Alina Xiong ◽  
Kalyani Maitra

Both nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations are routinely used in understanding the conformational space sampled by peptides in the solution state. To investigate the role of single-residue change in the ensemble of conformations sampled by a set of heptapeptides, AEVXEVG with X = L, F, A, or G, comprehensive NMR, and MD simulations were performed. The rationale for selecting the particular model peptides is based on the high variability in the occurrence of tri-peptide E*L between the transmembrane β-barrel (TMB) than in globular proteins. The ensemble of conformations sampled by E*L was compared between the three sets of ensembles derived from NMR spectroscopy, MD simulations with explicit solvent, and the random coil conformations. In addition to the estimation of global determinants such as the radius of gyration of a large sample of structures, the ensembles were analyzed using principal component analysis (PCA). In general, the results suggest that the -EVL- peptide indeed adopts a conformational preference that is distinctly different not only from a random distribution but also from other peptides studied here. The relatively straightforward approach presented herein could help understand the conformational preferences of small peptides in the solution state.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Audrey Montigny ◽  
Patrizia Tavormina ◽  
Carine Duboe ◽  
Hélène San Clémente ◽  
Marielle Aguilar ◽  
...  

Abstract Background Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. Results We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. Conclusion Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.


Sign in / Sign up

Export Citation Format

Share Document