scholarly journals Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites

2021 ◽  
Vol 28 (12) ◽  
Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Zsófia Kóczán ◽  
Duong Hung Anh Le ◽  
Miklós Bak ◽  
...  

AbstractThis study investigated about the developments of insulation panels from multilayered coir long and short fiber reinforced phenol formaldehyde polymeric (PF) resin. The lengths of coir long fibers (CLF) were within 3 mm, whereas the short fibers (CSF) ranged from 0.1 mm to 1.25 mm. Four composite panels of 360, 680, 800, and 1000 kg/m3 densities were developed by employing hot pressing technology. The thermal conductivity, microstructural, mechanical, and physical properties of the composite panels were investigated. Perceived thermal conductivity values ranged within 0.046280 (0.000494) to 0.062400 (0.001146) Wm‒1 k‒1of the composites demonstrating superior insulation properties. Moreover, the current study also found that mechanical and thermal properties showed improvement with the increase of density. Low-density fiberboards had the lowest performances compared to high-density composite panels, with the exception of the 1000 kg/m3 density, in which fiber agglomeration occurred. Furthermore, all the developed composite panels display superior potentiality for use as effective insulation materials. The FTIR (Fourier transform infrared spectroscopy) analysis also shows an efficient bonding between the cellulosic coir materials and PF resin. The overall characteristics of the composite panels, especially medium fiberboard, show prominent potential for industrial production units by fulfilling the consumer requirements.

1999 ◽  
Vol 121 (3) ◽  
pp. 386-392
Author(s):  
Jiang Xiaoyu ◽  
Kong Xiangan

In this paper, the microstructure of “Saffil”-Al2O3 short fiber reinforced Al-Mg5.5 metal matrix composite material is simulated by computer. In the simulation it is taken into account of that the lengths, diameters, orientations, and locations of short fibers, etc. For the 3-D randomly distributed short fibers in composite materials, the typical distributions of short fiber microstructures on different planes are obtained for different short fiber volume fractions. The microstructural effects of average fiber length, diameter and their standard deviations on the overall strength of metal matrix composite materials are analyzed. From the short fiber microstructural distribution in metal matrix composite materials, the short fiber diameter coefficient ξd and short fiber length coefficient ξ1 are obtained for different standard deviations σd and σl, respectively. The short fiber orientation coefficient ξa is obtained, also. The results of these coefficients may be useful to the manufacture and use of short fiber reinforced composite materials. Considering these coefficients ξa ξd and ξl, the improved formula is given for the direct calculation of overall strength of short fibers reinforced composite materials. The improved formula may reflect the microstructural characteristics of short fibers reinforced composite materials.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 446
Author(s):  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Dong-Ha Lee ◽  
Dong-Ju Yeom ◽  
Jae-Myung Lee

Polyisocyanurate foam (PIF) has been adopted as a liquefied natural gas (LNG) insulating material owing to its various mechanical merits such as high structural stability and mechanical strength, and excellent insulating ability. In an attempt to increase the mechanical strength of PIF, chopped-glass-fiber-reinforced polyisocyanurate foam (CGR-PIF) was synthesized by adding chopped glass fibers to polyol and isocyanate, which are the raw materials used in the polymerization process for producing PIF. The main objective is to closely observe the compression material characteristics of PIF and CGR-PIF in terms of the cryogenic temperature. Therefore, compressive tests were conducted at cryogenic temperature including low temperatures, and microscopic images were obtained to analyze the cell size and distribution that affects the mechanical and thermal properties of the foam. Furthermore, recovery ratio and weight loss which are important factors of brittle fracture were evaluated, and the applicability of the foams to a cryogenic environment was evaluated. Finally, thermal conductivity, an important parameter of insulation, was evaluated. The obtained results confirm that the compressive strength of CGR-PIF significantly increases at cryogenic temperatures; moreover, a relatively higher thermal conductivity was observed in the case of CGR-PIF as compared to that of PIF owing to the chopped glass fibers.


Author(s):  
Mayank Agarwal

Abstract: This work investigates the mechanical properties (Tensile Strength & Impact Strength) and thermal properties (Thermal conductivity & diffusivity) of a natural fiber composite that includes banana fiber as reinforcement in epoxy (LY 556) matrix as the base material with the addition of silicon carbide particles by 5% and 10% by weight. This Banana Fiber Reinforced Epoxy Composite (BFREC) prepared by hand lay-up technique. After curing for a sufficient period, samples taken out and tested. The results suggest that on increasing SiC wt% in the matrix, there is enhancement of its tensile strength, impact strength, and thermal conductivity. Bulk density also increases while thermal diffusivity decreases. Due to low density as compared to metals, improved tensile and impact strength and low elongation at break of banana fibers, BFREC composite with SiC have very good potential use in the various sectors. Keywords: Banana fiber, SiC, hand layup technique, mechanical characterization, thermal conductivity, thermal diffusivity


2021 ◽  
pp. 002199832110373
Author(s):  
Alireza Sharei ◽  
Majid Safarabadi ◽  
Mahmoud M Mashhadi ◽  
Reza Souri Solut ◽  
Mojtaba Haghighi-Yazdi

This paper presents an experimental and numerical study of the low-velocity impact on foam core sandwich panels reinforced using hybrid short fibers. The foam cores were reinforced with carbon, aramid and carbon-aramid hybrid short fibers. The face-sheets were made of two layers of glass/epoxy, and foam cores were made of two-part polyurethane. In order to acquire the appropriate weight ratio between foam and short fibers, the weight percentage of 10% was chosen for short fibers. Comparing the experimental results proved that carbon, aramid, and carbon-aramid respectively had a better effect on increasing Young modulus by around 100 to 180 per cent. Before performing impact tests, indentation tests were conducted and based on the results for the parameter of impact energy, the value of 6  J was chosen. According to the results of impact tests and the maximum contact force, hybrid reinforced foam, aramid short fiber reinforced foam and carbon short fiber reinforced foam improved the properties respectively by 18 to 30 per cent in comparison to non-reinforced foam. Furthermore, numerical simulations were conducted via ABAQUS. After modeling face-sheet and foam separately, and verifying the results with experiments, the sandwich panel was modeled entirely while the simulation difference of 9.1% on average with the experiment results was concluded.


2019 ◽  
Vol 21 ◽  
pp. 100632
Author(s):  
Nicholas C. Ecke ◽  
Johannes Höller ◽  
Jan Niedermeyer ◽  
Peter Klein ◽  
Alois K. Schlarb

Sign in / Sign up

Export Citation Format

Share Document